Purpose. Circulating autoantibodies have been extensively investigated as possible markers for early diagnosis of cancer. The present study was carried out to investigate whether anti-LGALS3BP IgG autoantibodies could be classified as a biomarker for malignant tumors. Methods. An in-house developed enzyme-linked immunosorbent assay was used to detect autoantibodies to LGALS3BP in sera from 71 patients with various types of cancers and 54 healthy subjects matched by age and gender. Results. Patients with cancer have significant higher circulating levels of anti-LGALS3BP antibodies as compared to control subjects ( ). The test has a sensitivity of 33% and a specificity of 98%. Conclusions. Anti-LGALS3BP IgG autoantibodies are a promising biomarker for malignant tumors and could play a role in the development of a multimarker assay for the early detection of cancer. 1. Introduction Cancer is the second leading cause of death worldwide, accounting for about 600,000 deaths in the United States in 2012 [1]. Despite significant improvements in treatment, early detection remains the most important prognostic factor predicting of better outcome [2–4]. Current cancer screening methods, including mammography for breast cancer, colonoscopy for colon cancer, computed tomography for lung cancer, prostate-specific antigen for prostate cancer, and Papanicolaou stains for cervical cancer, have demonstrated some limitations in terms of sensitivity, specificity, complexity, cost, and compliance [5]. Serum tumor-associated antigens (TAAs) have been extensively studied for early cancer detection because of the simplicity and reliability of the tests used for their determination, such as western blot and enzyme-linked immunosorbent assay (ELISA). Unfortunately, they are transiently secreted and rapidly eliminated from blood circulation [6, 7] and usually reach a detectable concentration only in advanced stage of the disease [8]. Along with TAAs, autoantibodies are frequently detected in sera from patients affected by different types of neoplasms [9]. This finding has been interpreted as an attempt of the immune system to block invasion and spreading of cancer cells in the organism. Circulating autoantibodies have biological and biochemical characteristics that render them particularly suitable to screen subjects at cancer risk. In fact, they may develop early in the process of tumorigenesis, when premalignant or malignant cells begin to express altered molecules as a result of cell transformation [10, 11]. In addition, they can easily be detected in the serum because of the
References
[1]
R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA Cancer Journal for Clinicians, vol. 63, no. 1, pp. 11–30, 2013.
[2]
F. A. Coumans, S. Siesling, and L. W. Terstappen, “Detection of cancer before distant metastasis,” BMC Cancer, vol. 13, no. 1, article 283, 2013.
[3]
W. S. Atkin, R. Edwards, I. Kralj-Hans et al., “Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial,” The Lancet, vol. 375, no. 9726, pp. 1624–1633, 2010.
[4]
B. Levin, D. A. Lieberman, B. McFarland et al., “Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a Joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology,” Gastroenterology, vol. 134, no. 5, pp. 1570–1595, 2008.
[5]
R. A. Smith, V. Cokkinides, and O. W. Brawley, “Cancer screening in the United States, 2012: a review of current American Cancer Society guidelines and current issues in cancer screening,” CA Cancer Journal for Clinicians, vol. 62, no. 2, pp. 129–142, 2012.
[6]
M. G. Wahrenbrock and A. Varki, “Multiple hepatic receptors cooperate to eliminate secretory mucins aberrantly entering the bloodstream: are circulating cancer mucins the “tip of the iceberg”?” Cancer Research, vol. 66, no. 4, pp. 2433–2441, 2006.
[7]
H. H. Wandall, O. Blixt, M. A. Tarp et al., “Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes,” Cancer Research, vol. 70, no. 4, pp. 1306–1313, 2010.
[8]
M. J. Duffy, D. Evoy, and E. W. McDermott, “CA 15-3: uses and limitation as a biomarker for breast cancer,” Clinica Chimica Acta, vol. 411, no. 23-24, pp. 1869–1874, 2010.
[9]
K. S. Anderson and J. LaBaer, “The sentinel within: exploiting the immune system for cancer biomarkers,” Journal of Proteome Research, vol. 4, no. 4, pp. 1123–1133, 2005.
[10]
O. J. Finn, “Immune response as a biomarker for cancer detection and a lot more,” The New England Journal of Medicine, vol. 353, no. 12, Article ID 058157, pp. 1288–1290, 2005.
[11]
E. M. Tan, “Autoantibodies as reporters identifying aberrant cellular mechanisms in tumorigenesis,” Journal of Clinical Investigation, vol. 108, no. 10, pp. 1411–1415, 2001.
[12]
K. S. Anderson, N. Ramachandran, J. Wong et al., “Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer,” Journal of Proteome Research, vol. 7, no. 4, pp. 1490–1499, 2008.
[13]
P. J. Mintz, J. Kim, K.-A. Do et al., “Fingerprinting the circulating repertoire of antibodies from cancer patients,” Nature Biotechnology, vol. 21, no. 1, pp. 57–63, 2003.
[14]
S. R. Pereira-Faca, R. Kuick, E. Puravs et al., “Identification of 14-3-3θ as an antigen that induces a humoral response in lung cancer,” Cancer Research, vol. 67, no. 24, pp. 12000–12006, 2007.
[15]
N. Ramachandran, J. V. Raphael, E. Hainsworth et al., “Next-generation high-density self-assembling functional protein arrays,” Nature Methods, vol. 5, no. 6, pp. 535–538, 2008.
[16]
A. Grassadonia, N. Tinari, I. Iurisci et al., “90K (Mac-2 BP) and galectins in tumor progression and metastasis,” Glycoconjugate Journal, vol. 19, no. 7–9, pp. 551–556, 2002.
[17]
S. Iacobelli, E. Arno, P. Sismondi et al., “Measurement of a breast cancer associated antigen detected by monoclonal antibody SP-2 in sera of cancer patients,” Breast Cancer Research and Treatment, vol. 11, no. 1, pp. 19–30, 1988.
[18]
S. Iacobelli, P. Sismondi, M. Giai et al., “Prognostic value of a novel circulating serum 90K antigen in breast cancer,” British Journal of Cancer, vol. 69, no. 1, pp. 172–176, 1994.
[19]
A. G. Zeimet, C. Natoli, M. Herold et al., “Circulating immunostimulatory protein 90K and soluble interleukin-2-receptor in human ovarian cancer,” The International Journal of Cancer, vol. 68, no. 1, pp. 34–38, 1996.
[20]
A. Marchetti, N. Tinari, F. Buttitta et al., “Expression of 90K (Mac-2 BP) correlates with distant metastasis and predicts survival in stage I non-small cell lung cancer patients,” Cancer Research, vol. 62, no. 9, pp. 2535–2539, 2002.
[21]
N. Tinari, R. Lattanzio, P. Querzoli et al., “High expression of 90K (Mac-2 BP) is associated with poor survival in node-negative breast cancer patients not receiving adjuvant systemic therapies,” International Journal of Cancer, vol. 124, no. 2, pp. 333–338, 2009.
[22]
H. Inohara, S. Akahani, K. Koths, and A. Raz, “Interactions between galectin-3 and Mac-2-binding protein mediate cell- cell adhesion,” Cancer Research, vol. 56, no. 19, pp. 4530–4534, 1996.
[23]
T. Sasaki, C. Brakebusch, J. Engel, and R. Timpl, “Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds β1 integrins, collagens and fibronectin,” The EMBO Journal, vol. 17, no. 6, pp. 1606–1613, 1998.
[24]
T. A. Ulmer, V. Keeler, L. Loh et al., “Tumor-associated antigen 90K/Mac-2-binding protein: possible role in colon cancer,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1351–1366, 2006.
[25]
Y.-T. Chen, M. J. Scanlan, U. Sahin et al., “A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 5, pp. 1914–1918, 1997.
[26]
T. Soussi, “p53 Antibodies in the sera of patients with various types of cancer: a review,” Cancer Research, vol. 60, no. 7, pp. 1777–1788, 2000.
[27]
U. Schubert, L. C. Antón, J. Gibbs, C. C. Norbury, J. W. Yewdell, and J. R. Bennink, “Rapid degradation of a large fraction of newly synthesized proteins by proteasomes,” Nature, vol. 404, no. 6779, pp. 770–774, 2000.
[28]
P. Blume-Jensen and T. Hunter, “Oncogenic kinase signalling,” Nature, vol. 411, no. 6835, pp. 355–365, 2001.
[29]
S. Hakomori, “Tumor-associated carbohydrate antigens,” Annual Review of Immunology, vol. 2, Article ID 040184, pp. 103–126, 1984.
[30]
S.-I. Hakomori, “Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines,” Advances in Experimental Medicine and Biology, vol. 491, pp. 369–402, 2001.
[31]
K. O. Lloyd, “Philip Levine award lecture. Blood group antigens as markers for normal differentiation and malignant change in human tissues,” American Journal of Clinical Pathology, vol. 87, no. 1, pp. 129–139, 1987.
[32]
M. Caron, G. Choquet-Kastylevsky, and R. Joubert-Caron, “Cancer immunomics using autoantibody signatures for biomarker discovery,” Molecular and Cellular Proteomics, vol. 6, no. 7, pp. 1115–1122, 2007.
[33]
F. M. Brichory, D. E. Misek, A.-M. Yim et al., “An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 17, pp. 9824–9829, 2001.
[34]
F. Le Naour, D. E. Misek, M. C. Krause et al., “Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer,” Clinical Cancer Research, vol. 7, no. 11, pp. 3328–3335, 2001.
[35]
M. J. Nam, J. Madoz-Gurpide, H. Wang et al., “Molecular profiling of the immune response in colon cancer using protein microarrays: occurrence of autoantibodies to ubiquitin C-terminal hydrolase L3,” Proteomics, vol. 3, no. 11, pp. 2108–2115, 2003.
[36]
Y. Hirohashi, T. Torigoe, S. Inoda et al., “The functioning antigens: beyond just as the immunological targets,” Cancer Science, vol. 100, no. 5, pp. 798–806, 2009.
[37]
F. F. Madrid, “Autoantibodies in breast cancer sera: candidate biomarkers and reporters of tumorigenesis,” Cancer Letters, vol. 230, no. 2, pp. 187–198, 2005.
[38]
M. F. Ullah and M. Aatif, “The footprints of cancer development: cancer biomarkers,” Cancer Treatment Reviews, vol. 35, no. 3, pp. 193–200, 2009.
[39]
H. T. Tan, J. Low, S. G. Lim, and M. C. M. Chung, “Serum autoantibodies as biomarkers for early cancer detection,” The FEBS Journal, vol. 276, no. 23, pp. 6880–6904, 2009.
[40]
C. A. Casiano, M. Mediavilla-Varela, and E. M. Tan, “Tumor-associated antigen arrays for the serological diagnosis of cancer,” Molecular and Cellular Proteomics, vol. 5, no. 10, pp. 1745–1759, 2006.
[41]
P. Boyle, C. J. Chapman, S. Holdenrieder et al., “Clinical validation of an autoantibody test for lung cancer,” Annals of Oncology, vol. 22, no. 2, pp. 383–389, 2011.
[42]
M. Chatterjee, S. Mohapatra, A. Ionan et al., “Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays,” Cancer Research, vol. 66, no. 2, pp. 1181–1190, 2006.
[43]
X. Wang, J. Yu, A. Sreekumar et al., “Autoantibody signatures in prostate cancer,” The New England Journal of Medicine, vol. 353, no. 12, pp. 1224–1235, 2005.
[44]
D. Lu, E. Kuhn, R. E. Bristow et al., “Comparison of candidate serologic markers for type I and type II ovarian cancer,” Gynecologic Oncology, vol. 122, no. 3, pp. 560–566, 2011.
[45]
G. Yahalom, D. Weiss, I. Novikov, et al., “An antibody-based blood test utilizing a panel of biomarkers as a new method for improved breast cancer diagnosis,” Biomarkers in Cancer. In press.