全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

EphB4 Tyrosine Kinase Stimulation Inhibits Growth of MDA-MB-231 Breast Cancer Cells in a Dose and Time Dependent Manner

DOI: 10.1155/2013/857895

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. EphB4 receptor tyrosine kinase is of diagnostic and therapeutic value due to its overexpression in breast tumors. Dual functions of tumor promotion and suppression have been reported for this receptor based on presence or absence of its ligand. To elucidate such discrepancy, we aimed to determine the effect of time- and dose-dependent stimulation of EphB4 on viability and invasion of breast cancer cells via recombinant ephrinB2-Fc. Methods. Cells were seeded into multiwell plates and were stimulated by various concentrations of preclustered ephrinB2-Fc. Cell viability was measured on days 3 and 6 following treatment using alamar-blue when cells were in different states of confluence. Results. Stimulation of cells with ephrinB2 did not pose any significant effect on cell viability before reaching confluence, while inhibition of cell growth was detected after 6 days when cells were in postconfluent state following a dose-dependent manner. EphrinB2 treatment did not affect tubular formation and invasion on matrigel. Conclusion. This study showed that EphB4 can differentially inhibit cells at post confluent state and that presence of ligand manifests growth-inhibitory properties of EphB4 receptor. It is concluded that growth inhibition has occurred possibly due to long treatment with ligand, a process which leads to receptor downregulation. 1. Introduction Cancer cells express many factors that enable them to overcome regulatory barriers towards uninterrupted growth and to survive in abnormal circumstances in which normal cells will not [1]. Among such factors, tyrosine kinases play pivotal roles. Eph (Erythropoietin Producing Hepatoma) receptors comprise the largest family of tyrosine kinases and are divided into two classes of EphAs and EphBs based on their sequence homology. Receptor activation occurs via their membrane bound ligands ephrinAs and ephrinBs, respectively [2]. One distinguishing feature of this family is their ability to propagate bidirectional signals in cells expressing receptor and ligand; in other words, both Eph receptors and ephrin ligands are capable of inducing downstream signals in the form of forward and reverse signals [3]. Owing to such spatial orientation, Eph receptors and ephrin ligands construct a communication system between cells expressing the receptor and ligand, which allows them to be involved in many physiological processes such as proliferation, morphology and movement, normal organ out-growth during neuronal path finding, and angiogenesis [4–7]. Recently, their involvement in abnormalities such as cancer

References

[1]  D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000.
[2]  J.-P. Himanen, N. Saha, and D. B. Nikolov, “Cell-cell signaling via Eph receptors and ephrins,” Current Opinion in Cell Biology, vol. 19, no. 5, pp. 534–542, 2007.
[3]  E. B. Pasquale, “Eph receptors and ephrins in cancer: bidirectional signalling and beyond,” Nature Reviews Cancer, vol. 10, no. 3, pp. 165–180, 2010.
[4]  V. C. Dodelet and E. B. Pasquale, “Eph receptors and ephrin ligands: embryogenesis to tumorigenesis,” Oncogene, vol. 19, no. 49, pp. 5614–5619, 2000.
[5]  E. B. Pasquale, “Eph receptor signalling casts a wide net on cell behaviour,” Nature Reviews Molecular Cell Biology, vol. 6, no. 6, pp. 462–475, 2005.
[6]  E. B. Pasquale, “Eph-ephrin bidirectional signaling in physiology and disease,” Cell, vol. 133, no. 1, pp. 38–52, 2008.
[7]  N. Cheng, D. M. Brantley, and J. Chen, “The ephrins and Eph receptors in angiogenesis,” Cytokine and Growth Factor Reviews, vol. 13, no. 1, pp. 75–85, 2002.
[8]  D. Vaught, D. M. Brantley-Sieders, and J. Chen, “Eph receptors in breast cancer: oles in tumor promotion and tumor suppression,” Breast Cancer Research, vol. 10, no. 6, article 217, 2008.
[9]  N. K. Noren, M. Lu, A. L. Freeman, M. Koolpe, and E. B. Pasquale, “Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 15, pp. 5583–5588, 2004.
[10]  G. Martiny-Baron, T. Korff, F. Schaffner et al., “Inhibition of tumor growth and angiogenesis by soluble EphB4,” Neoplasia, vol. 6, no. 3, pp. 248–257, 2004.
[11]  N. Kertesz, V. Krasnoperov, R. Reddy et al., “The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth,” Blood, vol. 107, no. 6, pp. 2330–2338, 2006.
[12]  D. M. Brantley-Sieders, A. Jiang, K. Sarma et al., “Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome,” PLoS One, vol. 6, no. 9, Article ID e24426, 2011.
[13]  R. Rutkowski, I. Mertens-Walker, J. E. Lisle, A. C. Herington, and S.-A. Stephenson, “Evidence for a dual function of EphB4 as tumor promoter and suppressor regulated by the absence or presence of the ephrin-B2 ligand,” International Journal of Cancer, vol. 131, no. 5, pp. E614–E624, 2012.
[14]  S. R. Kumar, J. Singh, G. Xia et al., “Receptor tyrosine kinase EphB4 is a survival factor in breast cancer,” American Journal of Pathology, vol. 169, no. 1, pp. 279–293, 2006.
[15]  N. K. Noren and E. B. Pasquale, “Paradoxes of the EphB4 receptor in cancer,” Cancer Research, vol. 67, no. 9, pp. 3994–3997, 2007.
[16]  P. Kaenel, M. Mosimann, and A. C. Andres, “The multifaceted roles of Eph-ephrin signaling in breast cancer,” Cell Adhesion & Migration, vol. 6, no. 2, pp. 138–147, 2012.
[17]  N. K. Noren, G. Foos, C. A. Hauser, and E. B. Pasquale, “The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway,” Nature Cell Biology, vol. 8, no. 8, pp. 815–825, 2006.
[18]  S. Al-Nasiry, N. Geusens, M. Hanssens, C. Luyten, and R. Pijnenborg, “The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells,” Human Reproduction, vol. 22, no. 5, pp. 1304–1309, 2007.
[19]  K. Carles-Kinch, K. E. Kilpatrick, J. C. Stewart, and M. S. Kinch, “Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior,” Cancer Research, vol. 62, no. 10, pp. 2840–2847, 2002.
[20]  B. P. Fox and R. P. Kandpal, “Invasiveness of breast carcinoma cells and transcript profile: eph receptors and ephrin ligands as molecular markers of potential diagnostic and prognostic application,” Biochemical and Biophysical Research Communications, vol. 318, no. 4, pp. 882–892, 2004.
[21]  Z. Xiao, R. Carrasco, K. Kinneer, et al., “EphB4 promotes or suppresses Ras/MEK/ERK pathway in a context-dependent manner: implications for EphB4 as a cancer target,” Cancer Biology & Therapy, vol. 13, no. 8, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133