Solid tumors are embedded in a stromal microenvironment consisting of immune cells, such as macrophages and lymphocytes, as well as nonimmune cells, such as endothelial cells and fibroblasts. Chemokines are a type of small secreted chemotactic cytokine and together with their receptors play key roles in the immune defense. Critically, they regulate cancer cellular migration and also contribute to their proliferation and survival. The CCR5 chemokine receptor is involved in leucocytes chemotaxis to sites of inflammation and plays an important role in the macrophages, T cells, and monocytes recruitment. Additionally, CCR5 may have an indirect effect on cancer progression by controlling the antitumor immune response, since it has been demonstrated that its expression could promote tumor growth and contribute to tumor metastasis, in different types of malignant tumors. Furthermore, it was demonstrated that a CCR5 antagonist may inhibit tumor growth, consisting of a possible therapeutic target. In this context, the present review focuses on the establishment of CCR5 within the interface of host immunity, tumor microenvironment, and its potential as a targeting to immunotherapy. 1. Introduction Chemokines are a type of small secreted chemotactic cytokine. Together with their receptors, they play key roles in the immune defense by directing and controlling the migration, activation, differentiation, and survival in the physiology of acute and chronic inflammatory processes as well as in the pathological deregulations by attracting and simulating the various subsets of specific leukocytes [1]. Moreover, chemokines critically regulate cancer cellular migration and also contribute to their proliferation and survival [2]. The identification of a large number of chemokine receptors and their selectivity characterization and expression have provided information on the traffic regulation of leukocytes in health and disease. They are expressed on different types of leukocytes constitutively or induced, depending on cell types [3]. The chemokine system is often thought as showing significant redundancy since one receptor can bind multiple ligands, and conversely, a single ligand can bind several chemokine receptors [4]. However, differential spatio-temporal expression patterns for different chemokines and receptors in our body indicate that they probably have distinct roles in vivo [5]. To date, about 45 chemokines and 20 chemokine receptors have been identified and are grouped into four categories (C, CC, CXC, and CX3C) based on the location of the main cysteine
References
[1]
A. Viola and A. D. Luster, “Chemokines and their receptors: drug targets in immunity and inflammation,” Annual Review of Pharmacology and Toxicology, vol. 48, pp. 171–197, 2008.
[2]
F. Balkwill, “Cancer and the chemokine network,” Nature Reviews Cancer, vol. 4, no. 7, pp. 540–550, 2004.
[3]
P. Loetscher, M. Seitz, M. Baggiolini, and B. Moser, “Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes,” Journal of Experimental Medicine, vol. 184, no. 2, pp. 569–577, 1996.
[4]
S. J. Allen, S. E. Crown, and T. M. Handel, “Chemokine: receptor structure, interactions, and antagonism,” Annual Review of Immunology, vol. 25, pp. 787–820, 2007.
[5]
A. Mantovani, “The chemokine system: redundancy for robust outputs,” Immunology Today, vol. 20, no. 6, pp. 254–257, 1999.
[6]
K. Koizumi, S. Hojo, T. Akashi, K. Yasumoto, and I. Saiki, “Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response,” Cancer Science, vol. 98, no. 11, pp. 1652–1658, 2007.
[7]
M. O'Hayre, C. L. Salanga, T. M. Handel, and S. J. Allen, “Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment,” Biochemical Journal, vol. 409, no. 3, pp. 635–649, 2008.
[8]
C. J. Raport, J. Gosling, V. L. Schweickart, P. W. Gray, and I. F. Charo, “Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1β, and MIP-1α,” Journal of Biological Chemistry, vol. 271, no. 29, pp. 17161–17166, 1996.
[9]
M. Samson, O. Labbe, C. Mollereau, G. Vassart, and M. Parmentier, “Molecular cloning and functional expression of a new human CC-chemokine receptor gene,” Biochemistry, vol. 35, no. 11, pp. 3362–3367, 1996.
[10]
P. Proost, A. Wuyts, and J. van Damme, “The role of chemokines in inflammation,” Clinical and Experimental Medicine, vol. 26, no. 4, pp. 211–223, 1996.
[11]
P. Spagnolo, E. A. Renzoni, A. U. Wells et al., “C-C chemokine receptor 5 gene variants in relation to lung disease in sarcoidosis,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 6, pp. 721–728, 2005.
[12]
M. Chelli and M. Alizon, “Determinants of the trans-dominant negative effect of truncated forms of the CCR5 chemokine receptor,” Journal of Biological Chemistry, vol. 276, no. 50, pp. 46975–46982, 2001.
[13]
H. F. Kuipers, P. J. Biesta, L. J. Montagne, E. S. V. Haastert, P. Van Der Valk, and P. J. Van Den Elsen, “CC chemokine receptor 5 gene promoter activation by the cyclic AMP response element binding transcription factor,” Blood, vol. 112, no. 5, pp. 1610–1619, 2008.
[14]
R. J. Wierda, H. F. Kuipers, M. C. van Eggermond, et al., “Epigenetic control of CCR5 transcript levels in immune cells and modulation by small molecules inhibitors,” Journal of Cellular and Molecular Medicine, vol. 16, no. 8, pp. 1866–1877, 2011.
[15]
T. Nanki and P. E. Lipsky, “Stimulation of T-cell activation by CXCL12/stromal cell derived factor-1 involves a G-protein mediated signaling pathway,” Cellular Immunology, vol. 214, no. 2, pp. 145–154, 2001.
[16]
F. Sallusto, D. Lenig, C. R. Mackay, and A. Lanzavecchia, “Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes,” Journal of Experimental Medicine, vol. 187, no. 6, pp. 875–883, 1998.
[17]
G. R. Wallace, S. John Curnow, K. Wloka, M. Salmon, and P. I. Murray, “The role of chemokines and their receptors in ocular disease,” Progress in Retinal and Eye Research, vol. 23, no. 4, pp. 435–448, 2004.
[18]
U. Panzer, A. Schneider, O. M. Steinmetz et al., “The chemokine receptor 5 Delta32 mutation is associated with increased renal survival in patients with IgA nephropathy,” Kidney International, vol. 67, pp. 75–81, 2005.
[19]
E. Schlecker, A. Stojanovic, C. Eisen, et al., “Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth,” Journal of Immunology, vol. 189, no. 12, pp. 5602–5611, 2012.
[20]
L. Y. Chang, Y. C. Lin, C. W. Kang, et al., “The indispensable role of CCR5 for in vivo suppressor function of tumor-derived CD103+ effector/memory regulatory T cells,” Journal of Immunology, vol. 189, pp. 567–574, 2012.
[21]
K. Hirahara, A. Poholek, G. Vahedi, et al., “Mechanisms underlying helper T-cell plasticity: implications for immune-mediated disease,” The Journal of Allergy and Clinical Immunology, vol. 131, no. 5, pp. 1276–1287, 2013.
[22]
S. Nakayamada, H. Takahashi, Y. Kanno, and J. J. O'Shea, “Helper T cell diversity and plasticity,” Current Opinion in Immunology, vol. 24, p. 297, 2012.
[23]
E.-M. Weiss, A. Schmidt, D. Vobis et al., “Foxp3-mediated suppression of cd95l expression confers resistance to activation-induced cell death in regulatory T cells,” Journal of Immunology, vol. 187, no. 4, pp. 1684–1691, 2011.
[24]
M. M. Wong and E. N. Fish, “Chemokines: attractive mediators of the immune response,” Seminars in Immunology, vol. 15, no. 1, pp. 5–14, 2003.
[25]
J. Aliberti, C. Reis E Sousa, M. Schito et al., “CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells,” Nature Immunology, vol. 1, no. 1, pp. 83–87, 2000.
[26]
J. W. Tyner, O. Uchida, N. Kajiwara et al., “CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection,” Nature Medicine, vol. 11, no. 11, pp. 1180–1187, 2005.
[27]
R. Bonecchi, G. Bianchi, P. P. Bordignon et al., “Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s,” Journal of Experimental Medicine, vol. 187, no. 1, pp. 129–134, 1998.
[28]
A. Amedei, D. Prisco, and M. M. D'Elios, “The use of cytokines and chemokines in the cancer immunotherapy,” Recent Patents on Anti-Cancer Drug Discovery, vol. 8, no. 2, pp. 126–142, 2013.
[29]
F. Cocchi, A. L. DeVico, A. Garzino-Demo, S. K. Arya, R. C. Gallo, and P. Lusso, “Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells,” Science, vol. 270, no. 5243, pp. 1811–1815, 1995.
[30]
H. Feng, X. T. Zhu, Z. M. Qi et al., “Transient attenuated Foxp3 expression on CD4+ T cells treated with 7D4 mAb contributes to the control of parasite burden in DBA/2 mice infected with lethal plasmodium chabaudi chabaudi AS,” Scandinavian Journal of Immunology, vol. 75, no. 1, pp. 46–53, 2012.
[31]
A. P. Vicari and C. Caux, “Chemokines in cancer,” Cytokine and Growth Factor Reviews, vol. 13, no. 2, pp. 143–154, 2002.
[32]
O. Yoshie, “Immune chemokines and their receptors: the key elements in the genesis, homeostasis and function of the immune system,” Springer Seminars in Immunopathology, vol. 22, no. 4, pp. 371–391, 2000.
[33]
O. Yoshie, T. Imai, and H. Nomiyama, “Novel lymphocyte-specific CC chemokines and their receptors,” Journal of Leukocyte Biology, vol. 62, no. 5, pp. 634–644, 1997.
[34]
A. Ben-Baruch, “The multifaceted roles of chemokines in malignancy,” Cancer and Metastasis Reviews, vol. 25, no. 3, pp. 357–371, 2006.
[35]
A. Zlotnik, “Chemokines and cancer,” International Journal of Cancer, vol. 119, no. 9, pp. 2026–2029, 2006.
[36]
J. D. Shields, M. E. Fleury, C. Yong, A. A. Tomei, G. J. Randolph, and M. A. Swartz, “Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling,” Cancer Cell, vol. 11, no. 6, pp. 526–538, 2007.
[37]
S. Ma?es, E. Mira, R. Colomer et al., “CCR5 expression influences the progression of human breast cancer in a p53-dependent manner,” Journal of Experimental Medicine, vol. 198, no. 9, pp. 1381–1389, 2003.
[38]
T. Zimmermann, M. Moehler, I. Gockel et al., “Low expression of chemokine receptor CCR5 in human colorectal cancer correlates with lymphatic dissemination and reduced CD8+ T-cell infiltration,” International Journal of Colorectal Disease, vol. 25, no. 4, pp. 417–424, 2010.
[39]
A. Gonzalez-Martin, E. Mira, and S. Manes, “CCR5 in cancer immunotherapy: more than an, “attractive” receptor for T cells,” Oncoimmunology, vol. 1, p. 106, 2012.
[40]
E. Azenshtein, G. Luboshits, S. Shina et al., “The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity,” Cancer Research, vol. 62, no. 4, pp. 1093–1102, 2002.
[41]
N. Suffee, H. Hlawaty, A. Meddahi-Pelle, et al., “RANTES/CCL5-induced pro-angiogenic effects depend on CCR1, CCR5 and glycosaminoglycans,” Angiogenesis, vol. 15, pp. 727–744, 2012.
[42]
G. P. Gupta and J. Massagué, “Cancer metastasis: building a framework,” Cell, vol. 127, no. 4, pp. 679–695, 2006.
[43]
H. W. van Deventer, W. O'Connor Jr., W. J. Brickey, R. M. Aris, J. P. Y. Ting, and J. S. Serody, “C-C chemokine receptor 5 on stromal cells promotes pulmonary metastasis,” Cancer Research, vol. 65, no. 8, pp. 3374–3379, 2005.
[44]
C.-H. Tang, A. Yamamoto, Y.-T. Lin, Y.-C. Fong, and T.-W. Tan, “Involvement of matrix metalloproteinase-3 in CCL5/CCR5 pathway of chondrosarcomas metastasis,” Biochemical Pharmacology, vol. 79, no. 2, pp. 209–217, 2010.
[45]
J.-Y. Chuang, W.-H. Yang, H.-T. Chen et al., “CCL5/CCR5 axis promotes the motility of human oral cancer cells,” Journal of Cellular Physiology, vol. 220, no. 2, pp. 418–426, 2009.
[46]
H. Makishima, T. Ito, K. Momose et al., “Chemokine system and tissue infiltration in aggressive NK-cell leukemia,” Leukemia Research, vol. 31, no. 9, pp. 1237–1245, 2007.
[47]
E. Menu, E. De Leenheer, H. De Raeve et al., “Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model,” Clinical and Experimental Metastasis, vol. 23, no. 5-6, pp. 291–300, 2006.
[48]
D. Aldinucci, D. Lorenzon, L. Cattaruzza et al., “Expression of CCR5 receptors on Reed-Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions,” International Journal of Cancer, vol. 122, no. 4, pp. 769–776, 2008.
[49]
S.-W. Wang, H.-H. Wu, S.-C. Liu et al., “CCL5 and CCR5 interaction promotes cell motility in human osteosarcoma,” PLoS ONE, vol. 7, no. 4, Article ID e35101, 2012.
[50]
S. Lin, S. Wan, L. Sun et al., “Chemokine C-C motif receptor 5 and C-C motif ligand 5 promote cancer cell migration under hypoxia,” Cancer Science, vol. 103, no. 5, pp. 904–912, 2012.
[51]
J. Wang, Q. He, Y. G. Shao, and M. Ji, “Chemokines fluctuate in the progression of primary breast cancer,” European Review for Medical and Pharmacological Sciences, vol. 17, p. 596, 2013.
[52]
S. Pinilla, E. Alt, F. J. Abdul Khalek et al., “Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion,” Cancer Letters, vol. 284, no. 1, pp. 80–85, 2009.
[53]
A. E. Karnoub, A. B. Dash, A. P. Vo et al., “Mesenchymal stem cells within tumour stroma promote breast cancer metastasis,” Nature, vol. 449, no. 7162, pp. 557–563, 2007.
[54]
M. M. Jayasinghe, J. M. Golden, P. Nair, C. M. O'Donnell, M. T. Werner, and R. A. Kurt, “Tumor-derived CCL5 does not contribute to breast cancer progression,” Breast Cancer Research and Treatment, vol. 111, no. 3, pp. 511–521, 2008.
[55]
C. M. J. M. Faaij, A. J. Willemze, T. Révész et al., “Chemokine/chemokine receptor interactions in extramedullary leukaemia of the skin in childhood AML: differential roles for CCR2, CCR5, CXCR4 and CXCR7,” Pediatric Blood and Cancer, vol. 55, no. 2, pp. 344–348, 2010.
[56]
G. F. Hoyne, “Notch signaling in the immune system,” Journal of Leukocyte Biology, vol. 74, no. 6, pp. 971–981, 2003.
[57]
I. Maillard, S. H. Adler, and W. S. Pear, “Notch and the immune system,” Immunity, vol. 19, no. 6, pp. 781–791, 2003.
[58]
R. Sanchez-Dominguez, S. Pereira-Mendez, A. Gomez, et al., “Notch signals contribute to preserve the multipotentiality of human CD34(+)CD38(-)CD45RA(-)CD90(+) hematopoietic progenitors by maintaining T cell lineage differentiation potential,” Experimental Hematology, vol. 40, no. 12, pp. 983–993, 2012.
[59]
L. Mirandola, M. Chiriva-Internati, D. Montagna et al., “Notch1 regulates chemotaxis and proliferation by controlling the CC-chemokine receptors 5 and 9 in T cell acute lymphoblastic leukaemia,” Journal of Pathology, vol. 226, no. 5, pp. 713–722, 2012.
[60]
M. A. E. Watanabe, J. M. M. Oda, M. K. Amarante, and J. Cesar Voltarelli, “Regulatory T cells and breast cancer: implications for immunopathogenesis,” Cancer and Metastasis Reviews, vol. 29, no. 4, pp. 569–579, 2010.
[61]
Y. Belkaid and B. T. Rouse, “Natural regulatory T cells in infectious disease,” Nature Immunology, vol. 6, no. 4, pp. 353–360, 2005.
[62]
E. Yurchenko, M. Tritt, V. Hay, E. M. Shevach, Y. Belkaid, and C. A. Piccirillo, “CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence,” Journal of Experimental Medicine, vol. 203, no. 11, pp. 2451–2460, 2006.
[63]
S. G. Kang, R. J. Piniecki, H. Hogenesch et al., “Identification of a chemokine network that recruits FoxP3(+) regulatory T cells into chronically inflamed intestine,” Gastroenterology, vol. 132, no. 3, pp. 966–981, 2007.
[64]
M. Kallikourdis, K. G. Andersen, K. A. Welch, and A. G. Betz, “Alloantigen-enhanced accumulation of CCR5+“effector” regulatory T cells in the gravid uterus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 2, pp. 594–599, 2007.
[65]
J. M. M. Oda, R. L. Guembarovski, and M. A. E. Watanabe, “Transforming Growth Factor b (TGF-b) and Regulatory T Cells, (Treg): the interface of tumor and host immunity,” European Journal of Clinical & Medical Oncology, vol. 4, p. 6, 2012.
[66]
M. C. B. Tan, P. S. Goedegebuure, B. A. Belt et al., “Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer,” Journal of Immunology, vol. 182, no. 3, pp. 1746–1755, 2009.
[67]
R. Chakraborty, C. Rooney, G. Dotti, and B. Savoldo, “Changes in chemokine receptor expression of regulatory t cells after ex vivo culture,” Journal of Immunotherapy, vol. 35, no. 4, pp. 329–336, 2012.
[68]
F. Liotta, M. Gacci, F. Frosali et al., “Frequency of regulatory T cells in peripheral blood and in tumour-infiltrating lymphocytes correlates with poor prognosis in renal cell carcinoma,” British Journal of Urology International, vol. 107, no. 9, pp. 1500–1506, 2011.
[69]
K. A. Oldham, G. Parsonage, R. I. Bhatt et al., “T lymphocyte recruitment into renal cell carcinoma tissue: a role for chemokine receptors CXCR3, CXCR6, CCR5, and CCR6,” European Urology, vol. 61, no. 2, pp. 385–394, 2012.
[70]
L.-Y. Chang, Y.-C. Lin, J. Mahalingam et al., “Tumor-derived chemokine CCL5 enhances TGF-β-mediated killing of CD8+ T cells in colon cancer by T-regulatory cells,” Cancer Research, vol. 72, no. 5, pp. 1092–1102, 2012.
[71]
Z. I. Khamis, Z. J. Sahab, and Q. X. Sang, “Active roles of tumor stroma in breast cancer metastasis,” International Journal of Breast Cancer, vol. 2012, Article ID 574025, 10 pages, 2012.
[72]
T. Fujimura, K. Mahnke, and A. H. Enk, “Myeloid derived suppressor cells and their role in tolerance induction in cancer,” Journal of Dermatological Science, vol. 59, no. 1, pp. 1–6, 2010.
[73]
S. C. Robinson, K. A. Scott, J. L. Wilson, R. G. Thompson, A. E. I. Proudfoot, and F. R. Balkwill, “A chemokine receptor antagonist inhibits experimental breast tumor growth,” Cancer Research, vol. 63, no. 23, pp. 8360–8365, 2003.
[74]
M. Velasco-Velazquez and R. G. Pestell, “The CCL5/CCR5 axis promotes metastasis in basal breast cancer,” Oncoimmunology, vol. 2, Article ID e23660, 2013.
[75]
M. Velasco-Velazquez, X. Jiao, M. De La Fuente, et al., “CCR5 antagonist blocks metastasis of basal breast cancer cells,” Cancer Research, vol. 72, p. 3839, 2012.
[76]
M. K. Amarante, J. M. M. Oda, E. M. V. Reiche, H. K. Morimoto, M. N. Aoki, and M. A. E. W. Watanabe, “Human endogenous RNAs: implications for the immunomodulation of Toll-like receptor 3,” Experimental and Therapeutic Medicine, vol. 2, no. 5, pp. 925–929, 2011.
[77]
M. N. Aoki, M. K. Amarante, J. M. M. Oda, and M. A. E. Watanabe, “Caveolin involvement and modulation in breast cancer,” Mini-Reviews in Medicinal Chemistry, vol. 11, no. 13, pp. 1143–1152, 2011.
[78]
K. B. de Oliveira, R. L. Guembarovski, A. M. Guembarovski, et al., “CXCL12, CXCR4 and IFNgamma genes expression: implications for proinflammatory microenvironment of breast cancer,” Clinical and Experimental Medicine, vol. 13, no. 3, pp. 211–219, 2012.
[79]
J. L. Do Val Carneiro, S. L. Nixdorf, M. S. Mantovani et al., “Plasma malondialdehyde levels and CXCR4 expression in peripheral blood cells of breast cancer patients,” Journal of Cancer Research and Clinical Oncology, vol. 135, no. 8, pp. 997–1004, 2009.