全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adiponectin as a Biomarker of Osteoporosis in Postmenopausal Women: Controversies

DOI: 10.1155/2014/975178

Full-Text   Cite this paper   Add to My Lib

Abstract:

The literature reports indicating a link between plasma levels of adiponectin and body fat, bone mineral density, sex hormones, and peri- and postmenopausal changes, draw attention to the possible use of adiponectin as an indicator of osteoporotic changes, suggesting that adiponectin may also modulate bone metabolism. In this study, we attempted to analyze the available in vitro and in vivo results which could verify this hypothesis. Although several studies have shown that adiponectin has an adverse effect on bone mass, mainly by intensifying resorption, this peptide has also been demonstrated to increase the proliferation and differentiation of osteoblasts, inhibit the activity of osteoclasts, and reduce bone resorption. There are still many ambiguities; for example, it can be assumed that concentrations of adiponectin in plasma do not satisfactorily reflect its production by adipose tissue, as well as conflicting in vitro and in vivo results. It seems that the potential benefit in the treatment of patients with osteoporosis associated with the pharmacological regulation of adiponectin is controversial. 1. Introduction Although the main role of adipose tissue is energy storage (in the form of free or conducted fatty acids (FFAs)) and thermal protection of the human body, it has been revealed that adipose tissue has an independent endocrine and paracrine activity associated with the production of many bioactive molecules (adipokines) which influence metabolic processes, such as adiponectin (Figure 1) [1]. Figure 1: Examples of adipocyte-derived proteins with effect on bone structure. It has also been shown that metabolites secreted by white adipose tissue (WAT) and brown adipose tissue (BAT) may play an essential role in maintaining normal body weight (regulation of body energy) and that they may participate in maintaining homeostasis, for example, through the prevention of insulin resistance [2, 3]. This may lead to the potential use of these substances as important markers in the prediction of many diseases. The potential role of adiponectin in diagnostics is associated with protection against atherogenesis, insulin resistance, and obesity and as a possible marker of risk for developing menopausal metabolic syndrome [4–11]. But only a few cross-sectional studies have been performed on the association between serum adiponectin concentrations and bone turnover and bone remodeling markers in humans in vitro as well as that clinical studies have shown that serum adiponectin levels are associated with bone mineral density (BMD) and as biochemical markers

References

[1]  S. Gesta, Y.-H. Tseng, and C. R. Kahn, “Developmental origin of fat: tracking obesity to its source,” Cell, vol. 131, no. 2, pp. 242–256, 2007.
[2]  B. Cannon and J. Nedergaard, “Brown adipose tissue: function and physiological significance,” Physiological Reviews, vol. 84, no. 1, pp. 277–359, 2004.
[3]  K. Almind, M. Manieri, W. I. Sivitz, S. Cinti, and C. R. Kahn, “Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 7, pp. 2366–2371, 2007.
[4]  T. Yatagai, S. Nagasaka, A. Taniguchi et al., “Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus,” Metabolism, vol. 52, no. 10, pp. 1274–1278, 2003.
[5]  N. Sandhya, K. Gokulakrishnan, R. Ravikumar, V. Mohan, and M. Balasubramanyam, “Association of hypoadiponectinemia with hypoglutathionemia in NAFLD subjects with and without type 2 diabetes,” Disease Markers, vol. 29, no. 5, pp. 213–221, 2010.
[6]  C. J. Rosen and A. Klibanski, “Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis,” American Journal of Medicine, vol. 122, no. 5, pp. 409–414, 2009.
[7]  M. Cnop, P. J. Havel, K. M. Utzschneider et al., “Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex,” Diabetologia, vol. 46, no. 4, pp. 459–469, 2003.
[8]  M. S. Farvid, T. W. Ng, D. C. Chan, P. H. R. Barrett, and G. F. Watts, “Association of adiponectin and resistin with adipose tissue compartments, insulin resistance and dyslipidaemia,” Diabetes, Obesity and Metabolism, vol. 7, pp. 406–413, 2005.
[9]  J. Makovey, V. Naganathan, and P. Sambrook, “Gender differences in relationships between body composition components, their distribution and bone mineral density: a cross-sectional opposite sex twin study,” Osteoporosis International, vol. 16, no. 12, pp. 1495–1505, 2005.
[10]  T. Douchi, S. Yamamoto, T. Oki, K. Maruta, R. Kuwahata, and Y. Nagata, “Relationship between body fat distribution and bone mineral density in premenopausal Japanese women,” Obstetrics and Gynecology, vol. 95, no. 5, pp. 722–725, 2000.
[11]  D. von Muhlen, S. Safii, S. K. Jassal, J. Svartberg, and E. Barrett-Connor, “Associations between the metabolic syndrome and bone health in older men and women: the rancho bernardo study,” Osteoporosis International, vol. 18, no. 10, pp. 1337–1344, 2007.
[12]  K. A?baht, A. Gürlek, J. Karakaya, and M. Bayraktar, “Circulating adiponectin represents a biomarker of the association between adiposity and bone mineral density,” Endocrine, vol. 35, no. 3, pp. 371–379, 2009.
[13]  T. Puntus, B. Schneider, J. Meran, M. Peterlik, and S. Kudlacek, “Influence of age and gender on associations of body mass index with bone mineral density, bone turnover markers and circulating calcium-regulating and bone-active sex hormones,” Bone, vol. 49, no. 4, pp. 824–829, 2011.
[14]  Y. Shinoda, M. Yamaguchi, N. Ogata et al., “Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways,” Journal of Cellular Biochemistry, vol. 99, no. 1, pp. 196–208, 2006.
[15]  G. A. Williams, Y. Wang, K. E. Callon et al., “In vitro and in vivo effects of adiponectin on bone,” Endocrinology, vol. 150, no. 8, pp. 3603–3610, 2009.
[16]  H. S. Berner, S. P. Lyngstadaas, A. Spahr et al., “Adiponectin and its receptors are expressed in bone-forming cells,” Bone, vol. 35, no. 4, pp. 842–849, 2004.
[17]  I. Kanazawa, T. Yamaguchi, S. Yano, M. Yamauchi, M. Yamamoto, and T. Sugimoto, “Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells,” BMC Cell Biology, vol. 8, pp. 51–62, 2007.
[18]  Y. Mitsui, M. Gotoh, N. Fukushima et al., “Hyperadiponectinemia enhances bone formation in mice,” BMC Musculoskeletal Disorders, vol. 12, article 18, 2011.
[19]  N. Wu, Q.-P. Wang, H. Li, X.-P. Wu, Z.-Q. Sun, and X.-H. Luo, “Relationships between serum adiponectin, leptin concentrations and bone mineral density, and bone biochemical markers in Chinese women,” Clinica Chimica Acta, vol. 411, no. 9-10, pp. 771–775, 2010.
[20]  M. Kleerekoper, D. A. Nelson, E. L. Peterson, P. S. Wilson, G. Jacobsen, and C. Longcope, “Body composition and gonadal steroids in older white and black women,” Journal of Clinical Endocrinology and Metabolism, vol. 79, pp. 775–779, 1994.
[21]  M. F. Palin, V. V. Bordignon, and B. D. Murphy, “Adiponectin and the control of female reproductive functions,” Vitamins & Hormones, vol. 90, pp. 239–287, 2012.
[22]  Y. Miyatani, T. Yasui, H. Uemura et al., “Associations of circulating adiponectin with estradiol and monocyte chemotactic protein-1 in postmenopausal women,” Menopause, vol. 15, no. 3, pp. 536–541, 2008.
[23]  S. S. Tworoger, C. Mantzoros, and S. E. Hankinson, “Relationship of plasma adiponectin with sex hormone and insulin-like growth factor levels,” Obesity, vol. 15, no. 9, pp. 2217–2224, 2007.
[24]  L. Siemińska, A. Cichoń-Lenart, D. Kajdaniuk, et al., “Sex hormones and adipocytokines in postmenopausal women,” Polski Merkuriusz Lekarski, vol. 20, no. 120, pp. 727–730, 2006.
[25]  Q. P. Wang, L. Yang, X. P. Li, et al., “Effects of 17β-estradiol on adiponectin regulation of the expression of osteoprotegerin and receptor activator of nuclear factor-κB ligand,” Bone, vol. 51, pp. 515–523, 2012.
[26]  B. ?zkurt, Z. N. ?zkurt, M. Altay, C. N. Aktekin, O. ?a?layan, and Y. Tabak, “The relationship between serum adiponectin level and anthropometry, bone mass, osteoporotic fracture risk in postmenopausal women,” Eklem Hastaliklari ve Cerrahisi, vol. 20, no. 2, pp. 78–84, 2009.
[27]  U. B. Pajvani, X. Du, T. P. Combs et al., “Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin: implications for metabolic regulation and bioactivity,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 9073–9085, 2003.
[28]  L. Lenchik, T. C. Register, F.-C. Hsu et al., “Adiponectin as a novel determinant of bone mineral density and visceral fat,” Bone, vol. 33, no. 4, pp. 646–651, 2003.
[29]  Y. Arita, S. Kihara, N. Ouchi et al., “Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity,” Biochemical and Biophysical Research Communications, vol. 257, no. 1, pp. 79–83, 1999.
[30]  N. Pannacciulli, R. Vettor, G. Milan et al., “Anorexia nervosa is characterized by increased adiponectin plasma levels and reduced nonoxidative glucose metabolism,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 4, pp. 1748–1752, 2003.
[31]  E. Biver, C. Salliot, C. Combescure et al., “Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 9, pp. 2703–2713, 2011.
[32]  O. Ukkola and M. Santaniemi, “Adiponectin: a link between excess adiposity and associated comorbidities?” Journal of Molecular Medicine, vol. 80, no. 11, pp. 696–702, 2002.
[33]  R. S. Lindsay, T. Funahashi, R. L. Hanson et al., “Adiponectin and development of type 2 diabetes in the Pima Indian population,” The Lancet, vol. 360, no. 9326, pp. 57–58, 2002.
[34]  P. A. Kern, G. B. di Gregorio, T. Lu, N. Rassouli, and G. Ranganathan, “Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-α expression,” Diabetes, vol. 52, no. 7, pp. 1779–1785, 2003.
[35]  N. Napoli, C. Pedone, P. Pozzilli, F. Lauretani, L. Ferrucci, and R. A. Incalzi, “Adiponectin and bone mass density: the InCHIANTI study,” Bone, vol. 47, no. 6, pp. 1001–1005, 2010.
[36]  T. P. Combs, A. H. Berg, M. W. Rajala et al., “Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin,” Diabetes, vol. 52, no. 2, pp. 268–276, 2003.
[37]  A. Kunnari, M. Santaniemi, M. Jokela et al., “Estrogen replacement therapy decreases plasma adiponectin but not resistin in postmenopausal women,” Metabolism, vol. 57, no. 11, pp. 1509–1515, 2008.
[38]  S. T. Page, K. L. Herbst, J. K. Amory et al., “Testosterone administration suppresses adiponectin levels in men,” Journal of Andrology, vol. 26, no. 1, pp. 85–92, 2005.
[39]  W. S. Yang, W. J. Lee, T. Funahashi, et al., “Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin,” The Journal of Clinical Endocrinology & Metabolism, vol. 86, pp. 3815–3819, 2001.
[40]  E. E. Kershaw and J. S. Flier, “Adipose tissue as an endocrine organ,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2548–2556, 2004.
[41]  W. Shen, M. Punyanitya, A. M. Silva et al., “Sexual dimorphism of adipose tissue distribution across the lifespan: a cross-sectional whole-body magnetic resonance imaging study,” Nutrition and Metabolism, vol. 6, pp. 17–19, 2009.
[42]  J. A. Kanaley, C. Sames, L. Swisher et al., “Abdominal fat distribution in pre- and postmenopausal women: the impact of physical activity, age, and menopausal status,” Metabolism, vol. 50, no. 8, pp. 976–982, 2001.
[43]  M. Sowers, H. Zheng, K. Tomey et al., “Changes in body composition in women over six years at midlife: ovarian and chronological aging,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 3, pp. 895–901, 2007.
[44]  W. Bik, A. Baranowska-Bik, E. Wolinska-Witort et al., “The relationship between adiponectin levels and metabolic status in centenarian, early elderly, young and obese women,” Neuroendocrinology Letters, vol. 27, no. 4, pp. 493–500, 2006.
[45]  A. Gavrila, J. L. Chan, N. Yiannakouris et al., “Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: cross-sectional and interventional studies,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 10, pp. 4823–4831, 2003.
[46]  L. Siemińska, C. Wojciechowska, D. Niedziolka et al., “Effect of postmenopause and hormone replacement therapy on serum adiponectin levels,” Metabolism, vol. 54, no. 12, pp. 1610–1614, 2005.
[47]  T. Isobe, S. Saitoh, S. Takagi et al., “Influence of gender, age and renal function on plasma adiponectin level: the Tanno and Sobetsu study,” European Journal of Endocrinology, vol. 153, no. 1, pp. 91–98, 2005.
[48]  K. Esposito, A. Pontillo, C. di Palo et al., “Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial,” Journal of the American Medical Association, vol. 289, no. 14, pp. 1799–1804, 2003.
[49]  J. Jürim?e, K. Rembel, T. Jürim?e, et al., “Adiponectin is associated with bone mineral density in perimenopausal women,” Hormone and Metabolic Research, vol. 37, pp. 297–302, 2005.
[50]  R. Sodi, M. J. Hazell, B. H. Durham, C. Rees, L. R. Ranganath, and W. D. Fraser, “The circulating concentration and ratio of total and high molecular weight adiponectin in post-menopausal women with and without osteoporosis and its association with body mass index and biochemical markers of bone metabolism,” Clinical Biochemistry, vol. 42, no. 13-14, pp. 1375–1380, 2009.
[51]  J. Jürim?e and T. Jürim?e, “Plasma adiponectin concentration in healthy pre- and postmenopausal women: relationship with body composition, bone mineral, and metabolic variables,” American Journal of Physiology—Endocrinology and Metabolism, vol. 293, no. 1, pp. E42–E47, 2007.
[52]  S. Okuno, E. Ishimura, K. Norimine et al., “Serum adiponectin and bone mineral density in male hemodialysis patients,” Osteoporosis International, vol. 23, no. 7, pp. 2027–2035, 2012.
[53]  M. C. Zillikens, A. G. Uitterlinden, J. P. T. M. van Leeuwen et al., “The role of body mass index, insulin, and adiponectin in the relation between fat distribution and bone mineral density,” Calcified Tissue International, vol. 86, no. 2, pp. 116–125, 2010.
[54]  J. B. Richards, A. M. Valdes, K. Burling, U. C. Perks, and T. D. Spector, “Serum adiponectin and bone mineral density in women,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 4, pp. 1517–1523, 2007.
[55]  M. D. Kontogianni, U. G. Dafni, J. G. Routsias, and F. N. Skopouli, “Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women,” Journal of Bone and Mineral Research, vol. 19, no. 4, pp. 546–551, 2004.
[56]  K. C. Huang, W. C. Cheng, R. F. Yen, et al., “Lack of independent relationship between plasma adiponectin, leptin levels and bone density in nondiabetic female adolescents,” Clinical Endocrinology, vol. 61, no. 2, pp. 204–208, 2014.
[57]  J. Mohiti-Ardekani, H. Soleymani-Salehabadi, M. B. Owlia, et al., “Relationships between serum adipocyte hormones (adiponectin, leptin, resistin), bone mineral density and bone metabolic markers in osteoporosis patients,” Journal of Bone and Mineral Metabolism, 2013.
[58]  F. Carrasco, M. Ruz, P. Rojas et al., “Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery,” Obesity Surgery, vol. 19, no. 1, pp. 41–46, 2009.
[59]  M. Misra, K. K. Miller, J. Cord et al., “Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 6, pp. 2046–2052, 2007.
[60]  S. Matsui, T. Yasui, A. Tani, et al., “Association of circulating adiponectin with testosterone in women during the menopausal transition,” Maturitas, vol. 73, no. 3, pp. 255–260, 2012.
[61]  T. Kadowaki and T. Yamauchi, “Adiponectin and adiponectin receptors,” Endocrine Reviews, vol. 26, no. 3, pp. 439–451, 2005.
[62]  T. Yamauchi, J. Kamon, Y. Ito et al., “Cloning of adiponectin receptors that mediate antidiabetic metabolic effects,” Nature, vol. 426, pp. 762–769, 2003.
[63]  T. Yamauchi, J. Kamon, Y. Minokoshi et al., “Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase,” Nature Medicine, vol. 8, no. 11, pp. 1288–1295, 2002.
[64]  S. H. Jee, C. W. Ahn, J. S. Park, et al., “Serum adiponectin and type 2 diabetes: a 6-year follow-up cohort study,” Journal of Diabetes & Metabolism, vol. 37, pp. 252–261, 2013.
[65]  X.-H. Luo, L.-J. Guo, L.-Q. Yuan et al., “Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway,” Experimental Cell Research, vol. 309, no. 1, pp. 99–109, 2005.
[66]  K. Oshima, A. Nampei, M. Matsuda et al., “Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast,” Biochemical and Biophysical Research Communications, vol. 331, no. 2, pp. 520–526, 2005.
[67]  N. Yamaguchi, T. Kukita, Y.-J. Li et al., “Adiponectin inhibits osteoclast formation stimulated by lipopolysaccharide from Actinobacillus actinomycetemcomitans,” FEMS Immunology and Medical Microbiology, vol. 49, no. 1, pp. 28–34, 2007.
[68]  M. Tohidi, S. Akbarzadeh, B. Larijani, et al., “Omentin-1, visfatin and adiponectin levels in relation to bone mineral density in Iranian postmenopausal women,” Bone, vol. 51, pp. 876–881, 2012.
[69]  J. Jürim?e and T. Jürim?e, “Adiponectin is a predictor of bone mineral density in middle-aged premenopausal women,” Osteoporosis International, vol. 18, no. 9, pp. 1253–1259, 2007.
[70]  X.-D. Peng, H. Xie, Q. Zhao, X.-P. Wu, Z.-Q. Sun, and E.-Y. Liao, “Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men,” Clinica Chimica Acta, vol. 387, no. 1-2, pp. 31–35, 2008.
[71]  I. Kanazawa, “Adiponectin in metabolic bone disease,” Current Medicinal Chemistry, vol. 19, no. 32, pp. 5481–5492, 2012.
[72]  I. Kanazawa, T. Yamaguchi, M. Yamamoto, M. Yamauchi, S. Yano, and T. Sugimoto, “Relationships between serum adiponectin levels versus bone mineral density, bone metabolic markers, and vertebral fractures in type 2 diabetes mellitus,” European Journal of Endocrinology, vol. 160, no. 2, pp. 265–273, 2009.
[73]  P. Dimitri, N. Bishop, J. S. Walsh, and R. Eastell, “Obesity is a risk factor for fracture in children but is protective against fracture in adults: a paradox,” Bone, vol. 50, no. 2, pp. 457–466, 2012.
[74]  S. Chanprasertyothin, S. Saetung, P. Payattikul, R. Rajatanavin, and B. Ongphiphadhanakul, “Relationship of body composition and circulatory adiponectin to bone mineral density in young premenopausal women,” Journal of the Medical Association of Thailand, vol. 89, no. 10, pp. 1579–1583, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133