With the rapid development of high-speed railway in China, high-speed railway transport hub (HRTH) has become the high-density distribution center of passenger flow. In order to accurately detect potential safety hazard hidden in passenger flow, it is necessary to forecast the status of passenger flow. In this paper, we proposed a hybrid temporal-spatio forecasting approach to obtain the passenger flow status in HRTH. The approach combined temporal forecasting based on radial basis function neural network (RBF NN) and spatio forecasting based on spatial correlation degree. Computational experiments on actual passenger flow status from a specific bottleneck position and its correlation points in HRTH showed that the proposed approach is effective to forecast the passenger flow status with high precision. 1. Introduction As main influence factors for the safety and sustainability of transportation system, the insecure behaviors and statuses of people are hot issues and difficult problems in traffic safety engineering [1, 2]. With the rapid development of high-speed railway in China, HRTH has become an interface of multitransportation which includes high-speed railway, civil aviation, highway, waterway, urban rail transit, public transport, and private vehicles, and the safety of passenger flow in HRTH has attracted more and more attention. As the vital node of passenger transport net, HRTH is an important collection and distribution center of various transportation modes and massive passenger flow. The distribution quantity of passengers will be sustained to sharply increase with the growth of high-speed railway operation mileage. As the dramatic increase of passengers, high-density passenger flow is generated, which imposed a rigorous challenge to the safety management of HRTH. In order to avoid and solve the problems caused by passenger flow abnormal status, many approaches are proposed in literatures which can be mainly classified into two categories. The first category is the studies on passenger flow modeling and simulating in transport hubs. Gipps and Marksj? [3] focused on the prediction the alteration passenger flow in the passing environment and proposed a model for the interactions between passengers which is intended for use in a graphical computer simulation. Seyfried et al. [4] analyzed the influence of various approaches for the interaction between the passengers on the resulting velocity-density relation based on a modified social force model. Jia et al. [5] analyzed the characteristics of passenger flow and present parameters relation
References
[1]
W. Wang, W. Zhang, H. Guo, H. Bubb, and K. Ikeuchi, “A safety-based approaching behavioural model with various driving characteristics,” Transportation Research C, vol. 19, no. 6, pp. 1202–1214, 2011.
[2]
H. Guo, W. Wang, W. Guo, X. Jiang, and H. Bubb, “Reliability analysis of pedestrian safety crossing in urban traffic environment,” Safety Science, vol. 50, no. 4, pp. 968–973, 2012.
[3]
P. G. Gipps and B. Marksj?, “A micro-simulation model for pedestrian flows,” Mathematics and Computers in Simulation, vol. 27, no. 2-3, pp. 95–105, 1985.
[4]
A. Seyfried, B. Steffen, and T. Lippert, “Basics of modelling the pedestrian flow,” Physica A, vol. 368, no. 1, pp. 232–238, 2006.
[5]
H.-F. Jia, L.-L. Yang, and M. Tang, “Pedestrian flow characteristics analysis and model parameter calibration in comprehensive transport terminal,” Journal of Transportation Systems Engineering and Information Technology, vol. 9, no. 5, pp. 117–123, 2009.
[6]
X. Ji, X. Zhou, and B. Ran, “A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor,” Physica A, vol. 392, no. 8, pp. 1828–1839, 2013.
[7]
L. Wang, Q. Zhang, Y. Cai, J. L. Zhang, and Q. G. Ma, “Simulation study of pedestrian flow in a station hall during the spring festival travel rush,” Physica A, vol. 392, no. 10, pp. 2470–2478, 2013.
[8]
M. Zhong, C. Shi, X. Tu, T. Fu, and L. He, “Study of the human evacuation simulation of metro fire safety analysis in China,” Journal of Loss Prevention in the Process Industries, vol. 21, no. 3, pp. 287–298, 2008.
[9]
C. S. Jiang, F. Yuan, and W. K. Chow, “Effect of varying two key parameters in simulating evacuation for subway stations in China,” Safety Science, vol. 48, no. 4, pp. 445–451, 2010.
[10]
L. D. VanLandegen and X. Chen, “Microsimulation of large-scale evacuations utilizing metrorail transit,” Applied Geography, vol. 32, no. 2, pp. 787–797, 2012.
[11]
C. Shi, M. Zhong, X. Nong, L. He, J. Shi, and G. Feng, “Modeling and safety strategy of passenger evacuation in a metro station in China,” Safety Science, vol. 50, no. 5, pp. 1319–1332, 2012.
[12]
J. Bi, S. Shao, W. Guan, and L. Wang, “State of charge estimation of Li-ion batteries in an electric vehicle based on a radial-basis-function neural network,” Chinese Physics B, vol. 21, no. 11, Article ID 118801, 2012.
[13]
W. Y. Chang, “Equivalent circuit parameters estimation for PEM fuel cell using RBF neural network and enhanced particle swarm optimization,” Mathematical Problems in Engineering, vol. 2013, Article ID 672681, 8 pages, 2013.
[14]
E. E. Abusham and E. K. Wong, “Locally linear discriminate embedding for face recognition,” Discrete Dynamics in Nature and Society, vol. 2009, Article ID 916382, 8 pages, 2009.
[15]
J.-D. Wu and J.-C. Liu, “A forecasting system for car fuel consumption using a radial basis function neural network,” Expert Systems with Applications, vol. 39, no. 2, pp. 1883–1888, 2012.