Maximum likelihood (ML) algorithm is the most common and effective parameter estimation method. However, when dealing with small sample and low signal-to-noise ratio (SNR), threshold effects are resulted and estimation performance degrades greatly. It is proved that support vector machine (SVM) is suitable for small sample. Consequently, we employ the linear relationship between least squares support vector regression (LS-SVR)’s inputs and outputs and regard LS-SVR process as a time-varying linear filter to increase input SNR of received signals and decrease the threshold value of mean square error (MSE) curve. Furthermore, it is verified that by taking single-tone sinusoidal frequency estimation, for example, and integrating data analysis and experimental validation, if LS-SVR’s parameters are set appropriately, not only can the LS-SVR process ensure the single-tone sinusoid and additive white Gaussian noise (AWGN) channel characteristics of original signals well, but it can also improves the frequency estimation performance. During experimental simulations, LS-SVR process is applied to two common and representative single-tone sinusoidal ML frequency estimation algorithms, the DFT-based frequency-domain periodogram (FDP) and phase-based Kay ones. And the threshold values of their MSE curves are decreased by 0.3?dB and 1.2?dB, respectively, which obviously exhibit the advantage of the proposed algorithm. 1. Introduction Maximum likelihood (ML) estimation depends on the asymptotic theory, which means that the statistical characteristics are shown accurately only when the sample size is infinity. However, burst-mode transmissions always bring problems about short data and severe conditions. Therefore, threshold effect is existing. Namely, the mean square error (MSE) of ML estimation can reach Cramer-Rao lower bound (CRLB) if it is higher than a value, or the performance will be deteriorated rapidly. Statistical learning theory (SLT) and structure risk minimization (SRM) rule in it are specialized in small-sample learning [1]. As their concrete implement, support vector machine (SVM) overcomes the over-fitting and local minimum problems currently existing in artificial neural network (ANN). Least squares support vector regression (LS-SVR) has the following improvements: inequality constraint are substituted by equality one; a squared loss function is taken for the error variable. Hence, we introduce LS-SVR to improve ML estimator and take feedforward single-tone sinusoidal frequency estimation for example, in this study. Estimating frequency of a
References
[1]
V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York, NY, USA, 1998.
[2]
D. C. Rife and R. R. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Transactions on Information Theory, vol. 20, no. 5, pp. 591–598, 1974.
[3]
Y. V. Zakharov and T. C. Tozer, “Frequency estimator with dichotomous search of periodogram peak,” Electronics Letters, vol. 35, no. 19, pp. 1608–1609, 1999.
[4]
Y. V. Zakharov, V. M. Baronkin, and T. C. Tozer, “DFT-based frequency estimators with narrow acquisition range,” Proceedings of IEE Communications, vol. 148, no. 1, pp. 1–7, 2001.
[5]
E. Aboutanios, “A modified dichotomous search frequency estimator,” IEEE Signal Processing Letters, vol. 11, no. 2, pp. 186–188, 2004.
[6]
H. Xu and D. Zhang, “A simple iterative carrier frequency estimation algorithm,” in Proceedings of the International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC '09), pp. 724–727, Wuhan, China, April 2009.
[7]
G.-B. Zhang, “Novel algorithm for frequency estimation of sinusoid signal with random length,” in Proceedings of the International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT '11), pp. 523–526, Harbin, China, August 2011.
[8]
B. G. Quinn, “Estimating frequency by interpolation using Fourier coefficients,” IEEE Transactions on Signal Processing, vol. 42, no. 5, pp. 1264–1268, 1994.
[9]
B. G. Quinn, “Estimation of frequency, amplitude, and phase from the DFT of a time series,” IEEE Transactions on Signal Processing, vol. 45, no. 3, pp. 814–817, 1997.
[10]
E. Aboutanios and B. Mulgrew, “Iterative frequency estimation by interpolation on Fourier coefficients,” IEEE Transactions on Signal Processing, vol. 53, no. 4, pp. 1237–1242, 2005.
[11]
E. Aboutanios, “Generalised DFT-based estimators of the frequency of a complex exponential in noise,” in Proceedings of the 3rd International Congress on Image and Signal Processing (CISP '10), pp. 2998–3002, Yantai, China, October 2010.
[12]
C. Yang and G. Wei, “A noniterative frequency estimator with rational combination of three spectrum lines,” IEEE Transactions on Signal Processing, vol. 59, no. 10, pp. 5065–5070, 2011.
[13]
S. R. Dooley and A. K. Nandi, “Fast frequency estimation and tracking using Lagrange interpolation,” Electronics Letters, vol. 34, no. 20, pp. 1908–1910, 1998.
[14]
I. Djurovi? and V. V. Lukin, “Estimation of single-tone signal frequency by using the L-DFT,” Signal Processing, vol. 87, no. 6, pp. 1537–1544, 2007.
[15]
G. Campobello, G. Cannatá, N. Donato, A. Famulari, and S. Serrano, “A novel low-complex and low-memory method for accurate single-tone frequency estimation,” in Proceedings of the 4th International Symposium on Communications, Control, and Signal Processing (ISCCSP '10), pp. 1–6, Limassol, Cyprus, March 2010.
[16]
S. W. Chen, D. H. Li, and X. P. Wei, “Accurate frequency estimation of real sinusoid signal,” in Proceedings of the 2nd International Conference on Signal Processing Systems, pp. 370–372, Dalian, China, July 2010.
[17]
Z. Ye, G. Xu, and D. Guo, “An accurate estimation algorithm of frequency and phase at low signal-noise ratio levels,” in Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP '10), pp. 1–5, Suzhou, China, October 2010.
[18]
G. Wei, C. Yang, and F.-J. Chen, “Closed-form frequency estimator based on narrow-band approximation under noisy environment,” Signal Processing, vol. 91, no. 4, pp. 841–851, 2011.
[19]
S. A. Tretter, “Estimating the frequency of a noisy sinusoid by linear regression,” IEEE Transactions on Information Theory, vol. IT-31, no. 6, pp. 832–835, 1985.
[20]
S. Kay, “A fast and accurate single frequency estimator,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 12, pp. 1987–1990, 1989.
[21]
V. Clarkson, P. J. Kootsookos, and B. G. Quinn, “Analysis of the variance threshold of Kay's weighted linear predictor frequency estimator,” IEEE Transactions on Signal Processing, vol. 42, no. 9, pp. 2370–2379, 1994.
[22]
E. Rosnes and A. Vahlin, “Frequency estimation of a single complex sinusoid using a generalized Kay estimator,” IEEE Transactions on Communications, vol. 54, no. 3, pp. 407–415, 2006.
[23]
H. C. So and F. K. W. Chan, “A generalized weighted linear predictor frequency estimation approach for a complex sinusoid,” IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1304–1315, 2006.
[24]
A. B. Awoseyila, C. Kasparis, and B. G. Evans, “Improved single frequency estimation with wide acquisition range,” Electronics Letters, vol. 44, no. 3, pp. 245–247, 2008.
[25]
H. Fu and P. Y. Kam, “Improved weighted phase averager for frequency estimation of single sinusoid in noise,” Electronics Letters, vol. 44, no. 3, pp. 247–248, 2008.
[26]
M. Luise and R. Reggiannini, “Carrier frequency recovery in all-digital modems for burst-mode transmissions,” IEEE Transactions on Communications, vol. 43, no. 2–4, pp. 1169–1178, 1995.
[27]
M. P. Fitz, “Further results in the fast estimation of a single-tone frequency,” IEEE Transactions on Communications, vol. 42, no. 2–4, pp. 862–864, 1994.
[28]
U. Mengali and M. Morelli, “Data-aided frequency estimation for burst digital transmission,” IEEE Transactions on Communications, vol. 45, no. 1, pp. 23–25, 1997.
[29]
S. H. Leung, Y. Xiong, and W. H. Lau, “Modified Kay's method with improved frequency estimation,” Electronics Letters, vol. 36, no. 10, pp. 918–920, 2000.
[30]
K. W. K. Lui and H. C. So, “Two-stage autocorrelation approach for accurate single sinusoidal frequency estimation,” Signal Processing, vol. 88, no. 7, pp. 1852–1857, 2008.
[31]
D. Kim, M. J. Narasimha, and D. C. Cox, “An improved single frequency estimator,” IEEE Signal Processing Letters, vol. 3, no. 7, pp. 212–214, 1996.
[32]
T. Brown and M. M. Wang, “An iterative algorithm for single-frequency estimation,” IEEE Transactions on Signal Processing, vol. 50, no. 11, pp. 2671–2682, 2002.
[33]
Y.-C. Xiao, P. Wei, X.-C. Xiao, and H.-M. Tai, “Fast and accurate single frequency estimator,” Electronics Letters, vol. 40, no. 14, pp. 910–911, 2004.
[34]
M. L. Fowler and J. Andrew Johnson, “Extending the threshold and frequency range for phase-based frequency estimation,” IEEE Transactions on Signal Processing, vol. 47, no. 10, pp. 2857–2863, 1999.