The stabilizing problem of stochastic nonholonomic mobile robots with uncertain parameters is addressed in this paper. The nonholonomic mobile robots with kinematic unknown parameters are extended to the stochastic case. Based on backstepping technique, adaptive state-feedback stabilizing controllers are designed for nonholonomic mobile robots with kinematic unknown parameters whose linear velocity and angular velocity are subject to some stochastic disturbances simultaneously. A switching control strategy for the original system is presented. The proposed controllers that guarantee the states of closed-loop system are asymptotically stabilized at the zero equilibrium point in probability. 1. Introduction In the past decades, the control of nonholonomic systems has been widely pursued. By the results of Brockett [1], the nonholonomic system cannot be stabilized at a single equilibrium point by any static smooth pure state-feedback controller. To solve this problem, lots of novel approaches have been considered: discontinuous feedback control [2–4], smooth time-varying feedback controller [5], and the method of LMI [6]. The control of nonholonomic mobile robots plays an important role in that of nonholonomic systems because they are a benchmark for these systems. There is much attention devoted to the control of nonholonomic mobile robots. The nonholonomic mobile robots were classified into four types, which were characterized by generic structures of the model equations [7]. Based on the backstepping technique, the control for nonholonomic mobile robots was discussed: tracking problems [8] and stabilizing problems [9, 10]. Hespanha et al. introduced the mobile robot with parametric uncertainties [11], which were further discussed [12, 13]. But all the above articles discussed the nonholonomic systems in the deterministic case, which was not considered a stochastic disturbance. In recent years, stochastic nonlinear systems have received much attention [14, 15], especially for stochastic control when backstepping designs were firstly introduced [16, 17]. For stochastic nonholonomic systems, there were a few papers. The almost global adaptive asymptotical controllers of stochastic nonholonomic chained form systems were discussed by using discontinuous control [18]. The adaptive stabilization problem of stochastic nonholonomic systems with nonlinear drifts was considered [19–21]. By using state-scaling method, backstepping controllers were proposed to deal with exponential stabilization for nonholonomic mobile robots with stochastic disturbance [22, 23].
References
[1]
R. W. Brockett, “Asymptotic stability and feedback stabilization,” in Differential Geometric Control Theory (Houghton, Mich., 1982), vol. 27 of Progr. Math., pp. 181–191, Birkh?user, Boston, Mass, USA, 1983.
[2]
Z.-P. Jiang, “Iterative design of time-varying stabilizers for multi-input systems in chained form,” Systems & Control Letters, vol. 28, no. 5, pp. 255–262, 1996.
[3]
S. S. Ge, Z. Wang, and T. H. Lee, “Adaptive stabilization of uncertain nonholonomic systems by state and output feedback,” Automatica, vol. 39, no. 8, pp. 1451–1460, 2003.
[4]
Q.-D. Wang and C.-L. Wei, “Robust adaptive control of nonholonomic systems with nonlinear parameterization,” Acta Automatica Sinica, vol. 33, no. 4, pp. 399–403, 2007.
[5]
Y.-P. Tian and S. Li, “Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control,” Automatica, vol. 38, no. 8, pp. 1139–1146, 2002.
[6]
K.-C. Cao, “Global -exponential trackers for nonholonomic chained-form systems based on LMI,” International Journal of Systems Science, vol. 42, no. 12, pp. 1981–1992, 2011.
[7]
G. Campion, G. Bastin, and B. D'Andréa-Novel, “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots,” IEEE Transactions on Robotics and Automation, vol. 12, no. 1, pp. 47–62, 1996.
[8]
C. Wang, Y. Mei, Z. Liang, and Q. Jia, “Dynamic feedback tracking control of non-holonomic mobile robots with unknown camera parameters,” Transactions of the Institute of Measurement and Control, vol. 32, no. 2, pp. 155–169, 2010.
[9]
Z.-Y. Liang and C.-L. Wang, “Robust stabilization of nonholonomic chained form systems with uncertainties,” Acta Automatica Sinica, vol. 37, no. 2, pp. 129–142, 2011.
[10]
F. Yang and C.-L. Wang, “Adaptive stabilization for uncertain nonholonomic dynamic mobile robots based on visual servoing feedback,” Acta Automatica Sinica, vol. 37, no. 7, pp. 857–864, 2011.
[11]
J. P. Hespanha, D. Liberzon, and A. S. Morse, “Towards the supervisory control of uncertain nonholonomic systems,” in Proceedings of the American Control Conference (ACC '99), pp. 3520–3524, San Diego, Calif, USA, June 1999.
[12]
Z.-P. Jiang, “Robust exponential regulation of nonholonomic systems with uncertainties,” Automatica, vol. 36, no. 2, pp. 189–209, 2000.
[13]
Z. Xi, G. Feng, Z. P. Jiang, and D. Cheng, “A switching algorithm for global exponential stabilization of uncertain chained systems,” IEEE Transactions on Automatic Control, vol. 48, no. 10, pp. 1793–1798, 2003, New directions on nonlinear control.
[14]
G. Wei, Z. Wang, and H. Shu, “Robust filtering with stochastic nonlinearities and multiple missing measurements,” Automatica, vol. 45, no. 3, pp. 836–841, 2009.
[15]
G. Wei, Z. Wang, J. Lam, K. Fraser, G. P. Rao, and X. Liu, “Robust filtering for stochastic genetic regulatory networks with time-varying delay,” Mathematical Biosciences, vol. 220, no. 2, pp. 73–80, 2009.
[16]
M. Krsti? and H. Deng, Stability of Nonlinear Uncertain Systems, Springer, New York, NY, USA, 1998.
[17]
Z. Pan and T. Ba?ar, “Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion,” SIAM Journal on Control and Optimization, vol. 37, no. 3, pp. 957–995, 1999.
[18]
J. Wang, H. Gao, and H. Li, “Adaptive robust control of nonholonomic systems with stochastic disturbances,” Science in China. Series F. Information Sciences, vol. 49, no. 2, pp. 189–207, 2006.
[19]
Y. Zhao, J. Yu, and Y. Wu, “State-feedback stabilization for a class of more general high order stochastic nonholonomic systems,” International Journal of Adaptive Control and Signal Processing, vol. 25, no. 8, pp. 687–706, 2011.
[20]
D. Zhang, C. Wang, H. Chen, F. Yang, and J. Du, “Adaptive stabilization of stochastic non-holonomic systems with non-homogeneous uncertainties,” Transactions of the Institute of Measurement and Control, 2011.
[21]
D. Zhang, C. Wang, and H. Chen, “Adaptive state-feedback stabilization for stochastic nonholonomic chained systems,” Control Theory & Applications, vol. 29, no. 11, pp. 1479–1487, 2012.
[22]
Z. J. Wu and Y. H. Liu, “Stochastic stabilization of nonholonomic mobile robot with heading-angle-dependent disturbance,” Mathematical Problems in Engineering, vol. 2012, Article ID 870498, 17 pages, 2012.
[23]
Y. Shang and H. Meng, “Exponential stabilization of nonholonomic mobile robots subject to stochastic disturbance,” Journal of Information & Computational Science, vol. 9, no. 9, pp. 2635–2642, 2012.
[24]
H. Deng, M. Krsti?, and R. J. Williams, “Stabilization of stochastic nonlinear systems driven by noise of unknown covariance,” IEEE Transactions on Automatic Control, vol. 46, no. 8, pp. 1237–1253, 2001.
[25]
R. Z. Has'minski?, Stochastic Stability of Differential Equations, vol. 7 of Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands, 1980.
[26]
W. Lin and C. Qian, “Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework,” IEEE Transactions on Automatic Control, vol. 47, no. 5, pp. 757–774, 2002.
[27]
X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing Series in Mathematics & Applications, Horwood, Chichester, UK, 1997.