全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A New Model for Capturing the Spread of Computer Viruses on Complex-Networks

DOI: 10.1155/2013/956893

Full-Text   Cite this paper   Add to My Lib

Abstract:

Based on complex network, this paper proposes a novel computer virus propagation model which is motivated by the traditional SEIRQ model. A systematic analysis of this new model shows that the virus-free equilibrium is globally asymptotically stable when its basic reproduction is less than one, and the viral equilibrium is globally attractive when the basic reproduction is greater than one. Some numerical simulations are finally given to illustrate the main results, implying that these results are applicable to depict the dynamics of virus propagation. 1. Introduction Computer viruses, including the narrowly defined viruses and network worms, are loosely defined as malicious codes that can replicate themselves and spread among computers. Usually, computer viruses attack computer systems directly, while worms mainly attack computers by searching for system or software vulnerabilities. With the rapid popularization of the Internet and mobile wireless networks, network viruses have posed a major threat to our work and life. To thwart the fast spread of computer viruses, it is critical to have a comprehensive understanding of the way that computer viruses propagate. Kephart and White [1] proposed the first epidemiological model of computer viruses. From then on, much effort has been done in developing virus spreading models [1–15]. On the other hand, it was found [16–18] that the Internet topology follows the “scale-free” (SF) networks; that is, the probability that a given node is connected to other nodes follows a power-law of the form , with the remarkable feature that for most real-world networks. This finding has greatly stimulated the interest in understanding the impact of network topology on virus spreading [16–29]. Recently, Mishra and Jha [2] investigated a so-called SEIQRS model on a homogeneous network by making the following assumptions.(H1)The population has a homogeneous degree distribution.(H2)The total population of computers is divided into five groups: susceptible, exposed, infected, quarantine and recovered computers. Let , , , , and denote the numbers of susceptible, exposed, infected, quarantine, and recovered computers, respectively.(H3)New computers are attached to the Internet at rate .(H4)Computers are disconnected from the Internet naturally at a constant rate and removed with probability due to the attack of malicious objects.(H5) computers become with constant rate ; computers become with constant rate ; computers become with constant rate ; computers become with constant rate ; computers become with constant rate ; computers

References

[1]  J. O. Kephart and S. R. White, “Directed-graph epidemiological models of computer viruses,” in Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, pp. 343–359, May 1991.
[2]  B. K. Mishra and N. Jha, “SEIQRS model for the transmission of malicious objects in computer network,” Applied Mathematical Modelling, vol. 34, no. 3, pp. 710–715, 2010.
[3]  J. R. C. Piqueira, A. A. de Vasconcelos, C. E. C. J. Gabriel, and V. O. Araujo, “Dynamic models for computer viruses,” Computers and Security, vol. 27, no. 7-8, pp. 355–359, 2008.
[4]  J. Ren, X. Yang, L.-X. Yang, Y. Xu, and F. Yang, “A delayed computer virus propagation model and its dynamics,” Chaos, Solitons & Fractals, vol. 45, no. 1, pp. 74–79, 2012.
[5]  X. Fu, M. Small, D. M. Walker, and H. Zhang, “Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization,” Physical Review E, vol. 77, no. 3, Article ID 036113, 8 pages, 2008.
[6]  T. Zhou, J. G. Liu, W. J. Bai, G. R. Chen, and B. H. Wang, “Bahaviors of susceptible-infected epidemics on scale-free networks with identical infectivity,” Physical Review E, vol. 74, no. 5, Article ID 056109, 6 pages, 2006.
[7]  L.-X. Yang and X. Yang, “Propagation behavior of virus codes in the situation that infected computers are connected to the internet with positive probability,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 693695, 13 pages, 2012.
[8]  L.-X. Yang, X. Yang, L. Wen, and J. Liu, “A novel computer virus propagation model and its dynamics,” International Journal of Computer Mathematics, vol. 89, no. 17, pp. 2307–2314, 2012.
[9]  L.-X. Yang, X. Yang, Q. Zhu, and L. Wen, “A computer virus model with graded cure rates,” Nonlinear Analysis: Real World Applications, vol. 14, no. 1, pp. 414–422, 2013.
[10]  L.-X. Yang and X. Yang, “The spread of computer viruses under the influence of removable storage devices,” Applied Mathematics and Computation, vol. 219, no. 8, pp. 3914–3922, 2012.
[11]  C. Gan, X. Yang, Q. Zhu, J. Jin, and L. He, “The spread of computer virus under the effect of external computers,” Nonlinear Dynamics, vol. 73, no. 3, pp. 1615–1620, 2013.
[12]  C. Gan, X. Yang, W. Liu, Q. Zhu, and X. Zhang, “An epidemic model of computer viruses with vaccination and generalized nonlinear incidence rate,” Applied Mathematics and Computation, vol. 222, pp. 265–274, 2013.
[13]  C. Gan, X. Yang, W. Liu, and Q. Zhu, “A propagation model of computer virus with nonlinear vaccination probability,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 1, pp. 92–100, 2014.
[14]  Q. Zhu, X. Yang, L. X. Yang, and X. Zhang, “A mixing propagation model of computer viruses and countermeasures,” Nonlinear Dynamics, vol. 73, no. 3, pp. 1433–1441, 2013.
[15]  Q. Zhu, X. Yang, L.-X. Yang, and C. Zhang, “Optimal control of computer virus under a delayed model,” Applied Mathematics and Computation, vol. 218, no. 23, pp. 11613–11619, 2012.
[16]  A. Lajmanovich and J. A. Yorke, “A deterministic model for gonorrhea in a nonhomogeneous population,” Mathematical Biosciences, vol. 28, no. 3-4, pp. 221–236, 1976.
[17]  M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the internet topology,” Computer Communication Review, vol. 29, no. 4, pp. 251–262, 1999.
[18]  H. J. Shi, Z. S. Duan, and G. R. Chen, “An SIS model with infective medium on complex networks,” Physica A, vol. 387, no. 8-9, pp. 2133–2144, 2008.
[19]  A. d'Onofrio, “A note on the global behaviour of the network-based SIS epidemic model,” Nonlinear Analysis: Real World Applications, vol. 9, no. 4, pp. 1567–1572, 2008.
[20]  M. Yang, G. Chen, and X. Fu, “A modified SIS model with an infective medium on complex networks and its global stability,” Physica A, vol. 390, no. 12, pp. 2408–2413, 2011.
[21]  L. Wen and J. Zhong, “Global asymptotic stability and a property of the SIS model on bipartite networks,” Nonlinear Analysis: Real World Applications, vol. 13, no. 2, pp. 967–976, 2012.
[22]  L.-X. Yang, X. Yang, J. Liu, Q. Zhu, and C. Gan, “Epidemics of computer viruses: s complex-network approach,” Applied Mathematics and Computation, vol. 219, no. 16, pp. 8705–8717, 2013.
[23]  R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47–97, 2002.
[24]  R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Physical Review Letters, vol. 86, no. 14, pp. 3200–3203, 2001.
[25]  Z. Dezs? and A. L. Barabási, “Halting viruses in scale-free networks,” Physical Review E, vol. 65, no. 5, Article ID 055103, 4 pages, 2002.
[26]  L. Billings, W. M. Spears, and I. B. Schwartz, “A unified prediction of computer virus spread in connected networks,” Physics Letters A, vol. 297, no. 3-4, pp. 261–266, 2002.
[27]  C. Castellano and R. Pastor-Satorras, “Thresholds for epidemic spreading in networks,” Physical Review Letters, vol. 105, no. 21, Article ID 218701, 4 pages, 2010.
[28]  M. Draief, A. Ganesh, and L. Massoulié, “Thresholds for virus spread on networks,” The Annals of Applied Probability, vol. 18, no. 2, pp. 359–378, 2008.
[29]  Y. Wang, Z. Jin, Z. Yang, Z.-K. Zhang, T. Zhou, and G.-Q. Sun, “Global analysis of an SIS model with an infective vector on complex networks,” Nonlinear Analysis: Real World Applications, vol. 13, no. 2, pp. 543–557, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133