We propose a new nonlinear economic system with fractional derivative. According to the Jumarie’s definition of fractional derivative, we obtain a discrete fractional nonlinear economic system. Three variables, the gross domestic production, inflation, and unemployment rate, are considered by this nonlinear system. Based on the concrete macroeconomic data of USA, the coefficients of this nonlinear system are estimated by the method of least squares. The application of discrete fractional economic model with linear and nonlinear structure is shown to illustrate the efficiency of modeling the macroeconomic data with discrete fractional dynamical system. The empirical study suggests that the nonlinear discrete fractional dynamical system can describe the actual economic data accurately and predict the future behavior more reasonably than the linear dynamic system. The method proposed in this paper can be applied to investigate other macroeconomic variables of more states. 1. Introduction Economic dynamics has recently become more prominent in mainstream economics. This influence has been quite pervasive and has influenced both microeconomics and macroeconomics. Its influence in macroeconomics, however, has been much greater. In the real-world life, economic evolution behaves like some process with inner random property. The investigation of economic system gains much development in the recent decades mainly since it can exhibit ubiquitous complex dynamics evidenced by large-amplitude and aperiodic fluctuations [1–3]. For instance, the study of economic system by using van del Pol equation is discussed in [4]. The variation of initial conditions and control parameters of the van del Pol model enables us to understand the periodic, quasiperiodic, and chaotic motion of economic variable considered. In [5, 6], the bifurcation topological structure and the global complicated character of a kind of nonlinear financial system are studied. A simplified macroeconomic model discussing the investment, interest rate, and price index is proposed and various evolution results of these economic variables depending on time and parameters are illustrated. Generally speaking, among these prices of literature we may find many mathematical conclusions of economic system, which are helpful to study the dynamical properties of economic models in depth. However, in the above literature, only integer order differential equations are investigated. In the recent years, it is found that depicting the real-world problem by using model with fractional derivative will provide more
References
[1]
R. Goodwin, Chaotic Economic Dynamics, Oxford University Press, New York, NY, USA, 1990.
[2]
R. Shone, Economic Dynamics, Cambridge University Press, New York, NY, USA, 2nd edition, 2002.
[3]
J. Stachurski, Economic Dynamics: Theory and Computation, MIT Press, Cambridge, Mass, USA, 2009.
[4]
A. C.-L. Chian, F. A. Borotto, E. L. Rempel, and C. Rogers, “Attractor merging crisis in chaotic business cycles,” Chaos, Solitons & Fractals, vol. 24, no. 3, pp. 869–875, 2005.
[5]
J. H. Ma and Y. S. Chen, “Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system. I,” Applied Mathematics and Mechanics, vol. 22, no. 11, pp. 1240–1251, 2001.
[6]
J. H. Ma and Y. S. Chen, “Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system. II,” Applied Mathematics and Mechanics, vol. 22, no. 12, pp. 1375–1382, 2001.
[7]
I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1999.
[8]
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 2006.
[9]
Y. Xu and Z. He, “The short memory principle for solving Abel differential equation of fractional order,” Computers & Mathematics with Applications, vol. 62, no. 12, pp. 4796–4805, 2011.
[10]
Y. Xu and Z. He, “Synchronization of variable-order fractional financialsystem via active control method,” Central European Journal of Physics, vol. 11, no. 6, pp. 824–835, 2013.
[11]
Y. Xu and Z. He, “Existence and uniqueness results for Cauchy problem of variable-order fractional differential equations,” Journal of Applied Mathematics and Computing, vol. 43, no. 1-2, pp. 295–306, 2013.
[12]
Y. Xu, Z. He, and Q. Xu, “Numerical solutions of fractional advectiondiffusion equations with a kind of new generalized fractional derivative,” International Journal of Computer Mathematics, 2013.
[13]
Y. Xu and O. P. Agrawal, “Models and numerical schemes for generalized van der Pol equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 12, pp. 3575–3589, 2013.
[14]
S. Ma, Y. Xu, and W. Yue, “Numerical solutions of a variable-order fractional financial system,” Journal of Applied Mathematics, vol. 2012, Article ID 417942, 14 pages, 2012.
[15]
A. Kirman and G. Teyssiere, “Microeconomic models for long memory in the volatility of financial time series,” Studies in Nonlinear Dynamics and Econometrics, vol. 5, no. 4, pp. 281–302, 2002.
[16]
K. Yamasaki, L. Muchnik, S. Havlin, A. Bunde, and H. E. Stanley, “Scaling and memory in volatility return intervals in financial markets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 26, pp. 9424–9428, 2005.
[17]
V. Anh and A. Inoue, “Financial markets with memory. I. Dynamic models,” Stochastic Analysis and Applications, vol. 23, no. 2, pp. 275–300, 2005.
[18]
F. Garzarelli, M. Cristelli, A. Zaccaria, and L. Pietronero, “Memory effects in stock price dynamics: evidences of technical trading,” http://arxiv.org/abs/1110.5197.
[19]
W.-C. Chen, “Nonlinear dynamics and chaos in a fractional-order financial system,” Chaos, Solitons & Fractals, vol. 36, no. 5, pp. 1305–1314, 2008.
[20]
S. Dadras and H. R. Momeni, “Control of a fractional-order economical system via sliding mode,” Physica A, vol. 389, no. 12, pp. 2434–2442, 2010.
[21]
Z. Wang, X. Huang, and G. Shi, “Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1531–1539, 2011.
[22]
T. Skovranek and I. Podlubny, “Modeling of the national economics in state-space: a fractional calculus approach,” Economic Modelling, vol. 29, no. 4, pp. 1322–1327, 2012.
[23]
G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results,” Computers & Mathematics with Applications, vol. 51, no. 9-10, pp. 1367–1376, 2006.
[24]
D. Gale, The Theory of Linear Economic Models, The University of Chicago Press, Chicago, Ill, USA, 1989.