全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Efficient Processing of Continuous Skyline Query over Smarter Traffic Data Stream for Cloud Computing

DOI: 10.1155/2013/209672

Full-Text   Cite this paper   Add to My Lib

Abstract:

The analyzing and processing of multisource real-time transportation data stream lay a foundation for the smart transportation's sensibility, interconnection, integration, and real-time decision making. Strong computing ability and valid mass data management mode provided by the cloud computing, is feasible for handling Skyline continuous query in the mass distributed uncertain transportation data stream. In this paper, we gave architecture of layered smart transportation about data processing, and we formalized the description about continuous query over smart transportation data Skyline. Besides, we proposed mMR-SUDS algorithm (Skyline query algorithm of uncertain transportation stream data based on micro-batchinMap Reduce) based on sliding window division and architecture. 1. Introduction Recently, tremendous changes have taken place in city transportation data sources, transportation data services, and information infrastructure. Traditional ITS (intelligent transport systems) present many defects in higher-dimensional space-time continuous data stream collected and passed back from mass perceptible and measurable sensor networks and the storage, processing, and analysis of big data. With the advent of computing technology such as Internet of things, cloud computing [1], and smarter transportation [2] has emerged, as a new concept of comprehensive transportation system. As shown in Figure 1, smarter transportation system covers various aspects of transportation and is a complex and comprehensive system consisting of plenty of subsystems. Analytical processing of multi-source and real-time transportation data stream [3] is the basis of realizing perceptible Smarter Transportation with interconnection integration and real-time decision. Besides, such analytical processing is critical to establishing global sustainable transportation surveillance, network optimization of dynamic transportation, automatic response to accidents, and integration of location-based transportation services. Figure 1: Smarter Transportation Information. With the rapid development of information technology, monitoring platform in various types of transportation information management collects complex mass transportation stream data including video information [4, 5] from cameras, monitoring information of sensors, positioning system information of vehicle, and so on. Hence, transportation stream data are provided with diverse sources, wide varieties, different forms, and typical data-intensive processing characteristics. For example, by December 28, 2012, there were 8842 fixed

References

[1]  M. Armbrust, A. Fox, R. Griffith, and M. Zaharia, “Above the Clouds: A Berkeley View of Cloud Computing,” Rep UCB/EECS-2009-28, UC, RAD Laboratory, Berkeley, Calif, USA, 2009.
[2]  IBM, “The Case for Smarter Transportation,” Whitepaper, IBM-Institute for Business Value, 2010.
[3]  B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in data stream systems,” in Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS '02), pp. 1–16, New York, NY, USA, June 2002.
[4]  H. Guo, W. Wang, W. Guo, X. Jiang, and H. Bubb, “Reliability analysis of pedestrian safety crossing in urban traffic environment,” Safety Science, vol. 50, no. 4, pp. 968–973, 2012.
[5]  W. Wang, Y. Mao, J. Jin et al., “Driver's various information process and multi-ruled decision-making mechanism: a fundamental of intelligent driving shaping model,” International Journal of Computational Intelligence Systems, vol. 4, no. 3, pp. 297–305, 2011.
[6]  S. Borzsonyi, D. Kossmamm, and K. Stocker, “The skyline operator,” in Proceedings of the 17th International Conference on Data Engineering, IEEE Computer Society, Washington, DC, USA, 2001.
[7]  C. Jia, W. Xu, F. Wang, and H. Wang, “Track irregularity time series analysis and trend forecasting,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 387857, 15 pages, 2012.
[8]  H. Wang, W. Xu, F. Wang, and C. A. Jia, “cloud-computing-based data placement strategy in high-speed railway,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 396387, 15 pages, 2012.
[9]  J. I. A. Chaolong, X. U. Weixiang, W. E. I. Lili, et al., “Study of railway track irregularity standard deviation time series based on data mining and linear model,” Mathematical Problems in Engineering Volume, vol. 2013, Article ID 486738, 12 pages, 2013.
[10]  C. K. -S. Leung, “Mining uncertain data,” Wiley Interdisciplinary Reviews, vol. 1, no. 4, pp. 316–329, 2011.
[11]  G. Juve, E. Deelman, K. Vahi et al., “Scientific workflow applications on amazon EC2,” in Proceedings of the 5th IEEE International Conference on e-Science Workshops (e-science '09), pp. 59–66, Oxford, UK, December 2009.
[12]  E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event processing over streams,” in Proceddings of the ACM SIGMOD International Conference on Management of Data, pp. 407–418, June 2006.
[13]  W. Zhang, X. Lin, Y. Zhang, W. Wang, and J. X. Yu, “Probabilistic skyline operator over sliding windows,” in Proceedings of the 25th IEEE International Conference on Data Engineering (ICDE '09), pp. 1060–1071, IEEE Computer Society, Shanghai, China, April 2009.
[14]  J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting,” in Proceedings of the 19th International Conference on Data Ingineering, pp. 717–719, IEEE Computer Society, Bangalore, India, March 2003.
[15]  D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: an online algorithm for Skyline ueries,” in Proceedings of the 28th International Conference on Very Large Data Bases (VLDB '02), pp. 275–286, Hong Kong, 2002.
[16]  D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive algorithm for skyline queries,” in Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD '03), pp. 467–478, San Diego, Calif, USA, June 2003.
[17]  K. L. Tan, P. K. Eng, and B. C. Ooi, “Efficient progressive Skyline computation,” in Proceedings of the 27th International Conference on Very Large Data Bases (VLDB '01), pp. 301–310, San Francisco, Calif, USA, 2001.
[18]  P. Jian, J. Bin, L. Xuemin, et al., “Probabilistic Skylines on uncertain data,” in Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB '07), pp. 15–26, Vienna, Austria, 2007.
[19]  M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, “Skyline query processing for uncertain data,” in Proceedings of the 19th International Conference on Information and Knowledge Management and Co-located Workshops, (CIKM '10), pp. 1293–1296, Toronto, Canada, October 2010.
[20]  Y. Tao and D. Papadias, “Maintaining sliding window skylines on data streams,” IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 3, pp. 377–391, 2006.
[21]  X. Lin, Y. Yuan, W. Wang, and H. Lu, “Stabbing the sky: efficient skyline computation over sliding windows,” in Proceedings of the 21st International Conference on Data Engineering (ICDE '05), pp. 502–513, IEEE Computer Society, Tokyo, Japan, April 2005.
[22]  W. Xiaowei, H. Jiuming, and J. Yan, “Probabilistic skyline computation on distributed uncertain data,” Journal of Frontiers of Computer Science and Technology, vol. 4, no. 10, pp. 951–961, 2010.
[23]  X. Chuanfei, L. Shukuan, W. Lei, and Q. Jianzhong, “Complex event detection in probabilistic stream,” in Proceedings of the 12th International Asia Pacific Web Conference (APWeb '10), pp. 361–363, April 2010.
[24]  X. Ding, X. Lian, L. Chen, and H. Jin, “Continuous monitoring of skylines over uncertain data streams,” Information Sciences, vol. 184, no. 1, pp. 196–214, 2012.
[25]  S.-L. Sun, D.-B. Dai, Z.-H. Huang, Q.-X. Zhang, and L.-X. Zhou, “Algorithm on computing skyline over probabilistic data stream,” Acta Electronica Sinica, vol. 37, no. 2, pp. 285–293, 2009.
[26]  J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. N?rv?g, “Efficient execution plans for distributed skyline query processing,” in Proceedings of the 14th International Conference on Extending Database Technology: Advances in Database Technology (EDBT '11), pp. 271–282, Uppsala, Sweden, March 2011.
[27]  Y. Yongtao and W. Yijie, “Towards estimating expected sizes of probabilistic Skylines,” Science China, vol. 53, no. 1, pp. 1–18, 2010.
[28]  B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou, “Parallel distributed processing of constrained skyline queries by filtering,” in Proceedings of the 24th International Conference on Data Engineering (ICDE '08), pp. 546–555, IEEE Computer Society, Cancun, Mexico, April 2008.
[29]  X. Ding and H. Jin, “Efficient and progressive algorithms for distributed skyline queries over uncertain data,” in Proceeedings of the 30th IEEE International Conference on Distributed Computing Systems (ICDCS '10), pp. 149–158, Genoa, Italy, June 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133