全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of Electric Vehicle’s Energy Consumption Factors for Different Road Types

DOI: 10.1155/2013/328757

Full-Text   Cite this paper   Add to My Lib

Abstract:

Energy-optimal route planning for electric vehicle (EV) is highly required for the wide-spread use of EV, which is hindered by limited battery capacity and relative short cruising range. Obtaining the cost for each link (i.e., link energy consumption) in road networks plays a key role in energy-optimal route planning process. The link energy consumption depends mainly on energy consumption factor, which is related to not only vehicle speed but also road type. This study aims to analyze the difference of EV’s energy consumption factors for different road types. According to the floating car data (FCD) collected from the road network in Beijing, the vehicle specific power (VSP) distributions under different average travel speeds for different road types are analyzed firstly, and then the EV’s energy consumption rates under different VSP-Bins are calculated. By using VSP as an intermediate variable, EV’s energy consumption factor models for different road types are established and the difference of EV’s energy consumption factors is analyzed. The results show that road type-based energy consumption factor should be used in EV’s energy-optimal route planning process. 1. Introduction Recently, to cope with the problem of pollutant emissions and energy consumption caused by gasoline and diesel powered vehicles, increasing attention has been paid to EVs due to the advantages of zero-emission during use, low noise, and high energy efficiency. However, the relative short cruising range has become one of the main obstacles to the development and wide-spread use of EVs [1]. Some intelligent transportation systems (ITS) solutions such as energy-efficient route planning and charging facilities guidance systems are proposed to help EV drivers to optimize travel route and find charging station timely, which are expected to alleviate the restrictions resulted from the relative short cruising range of EVs. Estimating EV’s energy consumption accurately is a prerequisite in route planning and navigation systems [2–4]; therefore it is of great significance to estimate EV’s energy consumption. Many researches on EV’s energy consumption estimation are based on ideal running status, whose results cannot reflect the effect of the actual vehicle running status. Physicallybased methods, which take into account vehicle driving parameters (i.e., average travel speed), are usually used in modeling fuel consumption of gasoline and diesel powered vehicles [5]. In these models, VSP is introduced as an intermediate variable for the ability to build the relationship between energy

References

[1]  C. Musardo, G. Rizzoni, Y. Guezennec, and B. Staccia, “A-ECMS: an adaptive algorithm for hybrid electric vehicle energy management,” European Journal of Control, vol. 11, no. 4-5, pp. 509–524, 2005.
[2]  T. Zuo, E.-J. Yao, Y. Yang, et al., “Study on route planning algorithm for electric vehicle,” Journal of Beijing Institute of Technology, vol. 21, no. 2, pp. 31–35, 2013.
[3]  M. Barth, K. Boriboonsomsin, and A. Vu, “Environmentally-friendly navigation,” in Proceedings of the 10th International IEEE Conference on Intelligent Transportation Systems (ITSC '07), pp. 684–689, Seattle, Wash, USA, October 2007.
[4]  K. Boriboonsomsin and M. Barth, “ECO-routing navigation system based on multi-source historical and real-time traffic information,” in Proceedings of the IEEE Workshop on Emergent Cooperative Technologies in Intelligent Transportation Systems (ICTSC '10), 2010.
[5]  H. Wang, L. Fu, Y. Zhou, and H. Li, “Modelling of the fuel consumption for passenger cars regarding driving characteristics,” Transportation Research D, vol. 13, no. 7, pp. 479–482, 2008.
[6]  A. G. Simpson, Parametric Modelling of Energy Consumption in Road Vehicles, University of Queensland, St Lucia, Australia, 2005.
[7]  D. Brzezinski, C. Hart, and P. Enns, “Final facility-specific speed correction factors,” Tech. Rep. EPA-420-R-01-060, U.S, Environmental Protection Agency, Washington, DC, USA, 2001.
[8]  Z.-P. Wang, L.-M. Yao, and F.-C. Sun, “Preliminary study on evaluation system of EV energy consumption economy,” Transaction of Beijing Institute of Technology, vol. 25, no. 6, pp. 479–486, 2005.
[9]  R. Joumard, P. Jost, J. Hickman, and D. Hassel, “Hot passenger car emissions modelling as a function of instantaneous speed and acceleration,” Science of the Total Environment, vol. 169, pp. 167–174, 1995.
[10]  M. André and C. Pronello, “Relative influence of acceleration and speed on emissions under actual driving conditions,” International Journal of Vehicle Design, vol. 18, no. 3-4, pp. 340–353, 1997.
[11]  Y.-G. Qi, H.-H. Teng, and L. Yu, “Microscale emission models incorporating acceleration and deceleration,” Journal of Transportation Engineering, vol. 130, no. 3, pp. 348–359, 2004.
[12]  E.-J. Yao, Z-F. Lang, Y.-Y. Song, Y. Yang, and T. Zuo, “Microscopic driving parameters-based energy-saving effect analysis under different electric vehicle penetration,” Advances in Mechanical Engineering, vol. 2013, Article ID 435721, 8 pages, 2013.
[13]  J. Q. Hansen, M. Winther, and S. C. Sorenson, “The influence of driving patterns on petrol passenger car emission,” Science of the Total Environment, vol. 169, pp. 129–139, 1995.
[14]  T. Zachariadis and Z. Samaras, “Comparative assessment of European tools to estimate traffic emissions,” International Journal of Vehicle Design, vol. 18, no. 3-4, pp. 312–325, 1997.
[15]  K. Ahn, H. Rakha, A. Trani, and M. Van Aerde, “Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels,” Journal of Transportation Engineering, vol. 128, no. 2, pp. 182–190, 2002.
[16]  J. L. Jiménez-Palacios, Understanding and quantifying motor vehicle emissions with vehicle specific power and TILDS remote sensing [Ph.D. thesis], Massachusetts Institute of Technology (MIT), Cambridge, Mass, USA, 1999.
[17]  T. Younglove, G. Scora, and M. Barth, “Designing on-road vehicle test programs for the development of effective vehicle emission models,” Transportation Research Record, no. 1941, pp. 51–59, 2005.
[18]  E. K. Nam and R. Giannelli, “Fuel consumption modeling of conventional and advanced technology vehicles in the physical emission rate estimator (PERE),” Tech. Rep. EPA420-P-05-001, Assessment and Standards Division Office of Transportation and Air Quality US Environmental Protection Agency, Washington, DC, USA, 2005.
[19]  G.-H. Song and L. Yu, “Estimation of fuel efficiency of road traffic by characterization of vehicle-specific power and speed based on floating car data,” Transportation Research Record, no. 2139, pp. 11–20, 2009.
[20]  E.-J. Yao and Y.-Y. Song, “Study on eco-route planning algorithm and environmental impact assessment,” Journal of Intelligent Transportation Systems, vol. 17, no. 1, pp. 42–53, 2013.
[21]  J. Liu and L. Yu, Speed correction model for vehicle emissions and fuel consumption based on VSP distributions [M.S. thesis], Beijing Jiaotong University, Beijing, China, 2010.
[22]  G.-H. Song, L. Yu, and Z. Tu, “Distribution characteristics of vehicle-specific power on urban restricted-access roadways,” Journal of Transportation Engineering, vol. 138, no. 2, pp. 202–209, 2011.
[23]  Y. Namikawa, Y. Takai, and N. Ohshiro, Calculation Base of Motor Vehicle Emission Factors, Technical Note of National Institute for Land and Infrastructure Management, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133