This paper presents a modeling method for analyzing a small transportation company’s start-up and growth during a global economic crisis which had an impact on China which is designed to help the owners make better investment and operating decisions with limited data. Since there is limited data, simple regression model and binary regression model failed to generate satisfactory results, so an additive periodic time series model was built to forecast business orders and income. Since the transportation market is segmented by business type and transportation distance, a polynomial model and logistic curve model were constructed to forecast the growth trend of each segmented transportation market, and the seasonal influence function was fitted by seasonal ratio method. Although both of the models produced satisfactory results and showed very nearly the same of goodness-of-fit in the sample, the logistic model presented better forecasting performance out of the sample therefore closer to the reality. Additionally, by checking the development trajectory of the case company’s business and the financial crisis in 2008, the modeling and analysis suggest that the sample company is affected by national macroeconomic factors such as GDP and import & export, and this effect comes with a time lag of one to two years. 1. Introduction Transport infrastructure is critical to economic development of a country and can provide competitive advantage. Within China there is a diversity of transport companies which could be split between with large-scale transport enterprises (LTEs) and small- and medium-sized transportation enterprises (SMTEs). There are many distinct differences between the two types of enterprises. Generally, LTEs, more geographically spread, attract larger enterprises and resource management is not as critical. SMTEs especially in their start-up period need to be more agile in the use of their financial resources to ensure survival. This is particularly true during a period of economic change. This paper focuses on SMTEs since they are the main suppliers of road transportation services in China. They necessarily play the role of first-and/or-last kilometer carriers for door-to-door logistics services. Some 225 259 enterprises and 4 595 600 individually owned businesses were engaged in transportation, storage, and postal services in 2008 [1]. The total value of the top 50 logistics enterprises, about 475.6 billion Yuan, is only 0.53% of the national added value of the logistics industry [2]. Compared with LTEs, SMTEs face much greater risk, especially
References
[1]
National Bureau of Statistics of China, “The second economic census data bulletin (no.1),” 2009, http://www.stats.gov.cn/tjsj/pcsj/jjpc/2jp/indexch.htm.
[2]
National Development and Reform Commission, National Bureau of Statistics of China and China Federation of Logistics & Purchasing, “2008 National Logistics operation Situation Bulletin,” 2009, http://www.sdpc.gov.cn/jjyx/xdwl/t20090306_264999.htm.
[3]
X. Chen, X. Wang, and D. D. Wu, “Credit risk measurement and early warning of SMEs: an empirical study of listed SMEs in China,” Decision Support Systems, vol. 49, no. 3, pp. 301–310, 2010.
[4]
J. Ansell and J. Banasik, “Forecasting white goods in a recesion,” IMA Journal of Management Mathematics, vol. 6, no. 3, pp. 315–331, 1995.
[5]
T. J. Fite, G. D. Taylor, J. S. Usher, J. R. English, and J. N. Roberts, “Forecasting freight demand using economic indices,” International Journal of Physical Distribution & Logistics Management, vol. 32, no. 4, pp. 299–308, 2002.
[6]
S. Shen, T. Fowkes, T. Whiteing, and D. Johnson, “Econometric modelling and forecasting of freight transport demand in Great Britain,” in Proceedings of European Transport Conference, http://abstracts.aetransport.org/.
[7]
L. Zhou, B. Heimann, and U. Clausen, “Forecasting a logistic service demand based on neural network,” in Proceedings of the International Conference on Service Systems and Service Management (ICSSSM '06), vol. 1, pp. 530–534, October 2006.
[8]
J. Harris, Fuzzy Logic Applications in Engineering Science, Intelligent Systems, Control and Automation: Science and Engineering, Springer, Dordrecht, The Netherlands, 2006.
[9]
B. G. S. Hardie, P. S. Fader, and M. Wisniewski, “An empirical comparison of new product trial forecasting models,” Journal of Forecasting, vol. 17, no. 3-4, pp. 209–229, 1998.
[10]
P. McBurney, S. Parsons, and J. Green, “Forecasting market demand for new telecommunications services: an introduction,” Telematics and Informatics, vol. 19, no. 3, pp. 225–249, 2002.
[11]
A. Mukherjee and V. Kadiyali, “Forecasting in rapidly changing environments: an application to the U.S. motion picture industry,” Cornell University Johnson School Research Paper Series 10-07.
[12]
G. Madden, R. Cooper, and R. Fildes, “Theoretically-motivated long-term forecasting with limited data,” Working Paper 240, The MIT Center for Digital Business, 2008.
[13]
C. Christodoulos, C. Michalakelis, and D. Varoutas, “Forecasting with limited data: combining ARIMA and diffusion models,” Technological Forecasting & Social Change, vol. 77, no. 4, pp. 558–565, 2010.
[14]
K. C. Green and J. S. Armstrong, “Demand forecasting: evidence-based methods,” Working Paper, University of Pennsylvania Department of Marketing, 2005.
[15]
J. Mostard, R. Teunter, and R. De Koster, “Forecasting demand for single-period products: a case study in the apparel industry,” European Journal of Operational Research, vol. 211, no. 1, pp. 139–147, 2011.
[16]
H. Tong, “Nonlinear time series analysis since 1990: some personal reflections,” Acta Mathematicae Applicatae Sinica, vol. 18, no. 2, pp. 177–184, 2002.
[17]
J. Z. Huang and H. Shen, “Functional coefficient regression models for non-linear time series: a polynomial spline approach,” Scandinavian Journal of Statistics, vol. 31, no. 4, pp. 515–534, 2004.
[18]
Z. Cai, “Trending time-varying coefficient time series models with serially correlated errors,” Journal of Econometrics, vol. 136, no. 1, pp. 163–188, 2007.
[19]
M. Barrow, Statistics for Economics, Accounting and Business Studies, Pearson Education, London, UK, 5th edition, 2009.
[20]
J. A. Nelder and R. W. M. Wedderburn, “Generalized linear models,” Journal of the Royal Statistical Society, Series A, vol. 135, no. 3, pp. 370–384, 1972.
[21]
D. N. Gujarati, Basic Econometrics, McGraw-Hill, New York, NY, USA, 4th edition, 2003.