全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Event-Based Control for Average Consensus of Wireless Sensor Networks with Stochastic Communication Noises

DOI: 10.1155/2013/610169

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper focuses on the average consensus problem for the wireless sensor networks (WSNs) with fixed and Markovian switching, undirected and connected network topologies in the noise environment. Event-based protocol is applied to each sensor node to reach the consensus. An event triggering strategy is designed based on a Lyapunov function. Under the event trigger condition, some sufficient conditions for average consensus in mean square are obtained. Finally, some numerical simulations are given to illustrate the effectiveness of the results derived in this paper. 1. Introduction Wireless sensor network (WSN) has attracted significant attention as an emerging communication architecture. It has many practical applications in such areas as robotics, surveillance and environment monitoring, and information collection. A WSN can be viewed as a multiagent system (MAS) from a network-theoretic perspective. Each node represents a sensor and each edge performs information exchange between sensors. In some cases, the agreement is a common value which may be the average of the initial states of the system, is often called average consensus, and has wide application background in the areas such as formation control [1], distributed filtering [2], and distributed computation [3]. It means to achieve the accordance of the states of MAS. In [4], Olfati-Saber and Murray consider the average consensus control for the directed and undirected networks with fixed and switching topologies. In [5], Kingston and Beard extend the results of [4] to the discrete-time models and weakened the condition of instantaneous strong connectivity. In [6], Xiao and Boyd consider the distributed averaging consensus of the networks with fixed and undirected topologies. In [7], Q. Zhang and J. Zhang design a distributed consensus protocol to analyze the multiagent systems in uncertain communication environments including the communication noises and Markov topology switches. In [8], Wang et al. investigate the H consensus control problem for a class of discrete time-varying multiagent systems with both missing measurements and parameter uncertainties. Also, the distributed estimation problems over sensor networks have been widely discussed in [9–11]. For the node of the WSNs with limited energy, control over networks with limited resources is a challenging task. Consequently, the most important problem in WSN is the energy consumption, which is directly proportional to the transmit power of the information exchange between the sensors. The event-based control can facilitate the efficient

References

[1]  J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1465–1476, 2004.
[2]  R. Olfati-Saber, “Distributed Kalman filter with embedded consensus filters,” in Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference (CDC-ECC '05), pp. 8179–8184, Seville, Spain, December 2005.
[3]  N. Lynch, Distributed Algorithms, Morgan Kaufmann, San Matero, Calif, USA, 1996.
[4]  R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.
[5]  D. B. Kingston and R. W. Beard, “Discrete-time average-consensus under switching network topologies,” in Proceedings of the American Control Conference, pp. 3551–3556, Minneapolis, Minn, USA, June 2006.
[6]  L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems and Control Letters, vol. 53, no. 1, pp. 65–78, 2004.
[7]  Q. Zhang and J. Zhang, “Distributed consensus of continuous-time multi-agent systems with markovian switching topologies and stochastic communication noises,” Journal of Systems Science and Mathematical Sciences, vol. 31, no. 9, pp. 1097–1110, 2011.
[8]  Z. Wang, D. Ding, H. Dong, and H. Shu, “H∞ consensus control for multi-agent systems with missing measurements: the finite-horizon case,” Systems and Control Letters, vol. 62, no. 10, pp. 827–836, 2013.
[9]  D. Ding, Z. Wang, H. Dong, and H. Shu, “Distributed H∞ state estimation with stochastic parameters and nonlinearities through sensor networks: the finite-horizon case,” Automatica, vol. 48, no. 8, pp. 1575–1585, 2012.
[10]  H. Dong, Z. Wang, and H. Gao, “Distributed H∞ filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks,” IEEE Transactions on Industrial Electronics, vol. 60, no. 10, pp. 4665–4672, 2013.
[11]  H. Dong, Z. Wang, and H. Gao, “Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts,” IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 3164–3173, 2012.
[12]  X. Wang and M. D. Lemmon, “Event-triggering in distributed networked control systems,” IEEE Transactions on Automatic Control, vol. 56, no. 3, pp. 586–601, 2011.
[13]  M. Mazo and P. Tabuada, “Decentralized event-triggered control over wireless sensor/actuator networks,” IEEE Transactions on Automatic Control, vol. 56, no. 10, pp. 586–601, 2011.
[14]  G. Seyboth, D. Dimarogonas, and K. Johansson, “Event-based broadcasting for multi-agent average consensus,” Automatica, vol. 49, no. 1, pp. 245–252, 2013.
[15]  X. Meng and T. Chen, “Event based agreement protocols for multi-agent networks,” Automatica, vol. 49, no. 7, pp. 2125–2132, 2013.
[16]  D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed event-triggered control for multi-agent systems,” IEEE Transactions on Automatic Control, vol. 57, no. 5, pp. 1291–1297, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133