The current information network cannot fundamentally meet some urgent requirements, such as providing ubiquitous information services and various types of heterogeneous network, supporting diverse and comprehensive network services, possessing high quality communication effects, ensuring the security and credibility of information interaction, and implementing effective supervisory control. This paper provides the theory system for the basic reconfigurable information communication network based on the analysis of present problems on the Internet and summarizes the root of these problems. It also provides an in-depth discussion about the related technologies and the prime components of the architecture. 1. Introduction The Internet has become one of the most important infrastructures supporting economic society development, social progress, and technological innovation, which is the important symbol that indicates the national basic power and economic competitiveness of a country. With the popularization of the Internet and the continued emergence of new application, such as data-hungry devices, mobile access, ubiquitous network, pervasive computing, and heterogeneous environment, the Internet is confronted with unprecedented technical challenges in manageability, extendibility, security, high performance, mobility, instantaneity, and so forth. To overcome these technical challenges, the developed countries, such as the USA, have begun to study the next-generation network from the middle 1990s [1]. With the progress of research on this issue, a great deal of literature has appeared see, for example, [2–5]. Chinese scientists and engineers have also turned to study next-generation network from the late 1990s. For now, researches on the key technologies and standards, the large-scale experimental network and the basic theory for the next-generation network have made considerable progress. At the same time, people have a deep understanding of the long-term, arduous, and complex nature of the study about the next-generation network. One after another, the developed countries have included the next-generation network in the key development orientation of information technology. In the first section, the present situation of today’s Internet was analyzed, and some problems are being pointted out; the third section explored the basic theory and key technology of a basic reconfigurable information communication network. In the end, the properties of the reconfigurable network are analyzed. 2. Current Actualities and Problems of Internet From the perspective of
References
[1]
J.-P. Wu and K. Xu, “Research on next-generation internet architecture,” Journal of Computer Science and Technology, vol. 21, no. 5, pp. 723–731, 2006.
[2]
C.-S. Lee and D. Knight, “Realization of the next-generation network,” IEEE Communications Magazine, vol. 43, no. 10, pp. 34–41, 2005.
[3]
M. N. O. Sadiku and T. H. Nguyen, “Next generation networks,” IEEE Potentials, vol. 21, no. 2, pp. 6–8, 2002.
[4]
H. M. Sigurdsson, S. E. Thorsteinsson, and T. K. Stidsen, “Cost optimization methods in the design of next generation networks,” IEEE Communications Magazine, vol. 42, no. 9, pp. 118–122, 2004.
[5]
J. Simoes and S. Wahle, “The future of services in next generation networks,” IEEE Potentials, vol. 30, no. 1, pp. 24–29, 2011.
[6]
Z. Zhang, B. Q. Wang, and J. Liu, “Balanced counting Bloom filters: a space-efficient synoptic data structure for a high-performance network,” IET Communications, vol. 6, no. 15, pp. 2259–2266, 2012.
[7]
H. Ma, Y. Guo, D. Cheng, and J. Zhang, “Reducing burst packet loss through route-free forwarding,” Journal of Electronics, vol. 27, no. 3, pp. 363–370, 2010.
[8]
I. Artundo, W. Heirman, C. Debaes, M. Loperena, J. Van Campenhout, and H. Thienpont, “Low-power reconfigurable network architecture for on-chip photonic interconnects,” in Proceedings of the 17th IEEE Symposium on High Performance Interconnects (HOTI '09), pp. 163–169, New York, NY, USA, August 2009.
[9]
M. Attig and J. Lockwood, “A framework for rule processing in reconfigurable network systems,” in Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM '05), pp. 225–234, April 2005.
[10]
C. A. Balanis, “Smart antennas for future reconfigurable wireless communication networks,” in Proceedings of the IEEE Topical Conference on Wireless Communication Technology, pp. 181–182, October 2003.
[11]
C. Y. Chao and M. Ilyas, “Fast reconfigurable communication networks,” in Proceedings of the 8th Annual International Phoenix Conference on Computers and Communications, pp. 248–252, Scottsdale, Ariz, USA, March 1989.
[12]
C. Y. Chao and M. Ilyas, “Distributed channel allocation in reconfigurable communication networks,” in Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 896–900, Columbia, SC, USA, April 1989.
[13]
J.-C. Chen, J.-H. Yeh, S.-H. Hung, F.-C. Chen, L.-W. Lin, and Y.-W. Lan, “Reconfigurable architecture and mobility management for next-generation wireless IP networks,” IEEE Transactions on Wireless Communications, vol. 6, no. 8, pp. 3102–3113, 2007.
[14]
S. Yusuf, W. Luk, M. Sloman, N. Dulay, E. C. Lupu, and G. Brown, “Reconfigurable architecture for network flow analysis,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 1, pp. 57–65, 2008.