全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Actin Colocalization with Metaphase Chromosomes of the Second Meiosis in Ovulated Mouse Oocytes

DOI: 10.1155/2013/426369

Full-Text   Cite this paper   Add to My Lib

Abstract:

Functional interrelation of nuclear actin with transcriptional active chromatin in the interphase nucleus was reliably established in numerous experiments, but the relationship between actin and transcriptional silent chromatin is still unclear. We examined localization area of the second meiotic division metaphase plate in ovulated mouse oocytes with the aim to study the possibility of actin-chromatin colocalization and uncovering the distribution patterns of different functional forms of actin near the metaphase chromosomes. Confocal microscopy and probes for actin that are distinguished from each other by the mechanism of actin binding (TRITC-phalloidin, fluorescent DNase-I, and antibodies against fragment of C-terminal and fragment of N-terminal domain of actin) were used for actin visualization. Despite the fact that TRITC-phalloidin could not detect F-actin in the area of metaphase plate, oocytes staining with antibody against fragment of the actin N-terminal domain demonstrates the presence near the metaphase chromosomes of some spindle-like structure composed of actin filaments. Among all used probes for actin, only the antibody against fragment of the C-terminal domain detected accurate actin colocalization with metaphase chromosomes. We conclude that this antibody labeled noncanonical form of the nuclear actin existing in long-term association with highly condensed chromatin. 1. Introduction Actin is an important participant of eukaryotic cell metabolism. Within the nucleus actin exists in several functional forms—monomeric (G-actin), actin oligomers, and short filaments [1]. The presence of canonical filamentous actin (F-actin) in the nucleus under normal conditions has not been authentically proved. Results of numerous studies carried out with the use of various somatic cell types have demonstrated involvement of nuclear actin to such basic nuclear processes as mRNA processing, nuclear export, and intranuclear transport [2, 3]. By the present time convincing evidence of actin association with functionally active chromatin was obtained: actin was identified as a part of all three RNA polymerases [4] and of chromatin remodeling complexes [5]. But at the same time interrelations between actin and transcriptional silent highly condensed chromatin (or chromosomes) are still unclear. The functional role of actin in nuclear metabolism during gametogenesis and in initial stages of embryo development today is poorly understood. Historically the main part of data on cellular biology of nuclear actin has been received in experiments designed with the

References

[1]  B. T. Bettinger, D. M. Gilbert, and D. C. Amberg, “Actin up in the nucleus,” Nature Reviews Molecular Cell Biology, vol. 5, no. 5, pp. 410–415, 2004.
[2]  W. Hofmann, “Cell and molecular biology of nuclear actin,” International Review of Cell and Molecular Biology, vol. 273, pp. 219–263, 2009.
[3]  N. Visa, “Nuclear functions of actin,” Cold Spring Harbor Perspectives in Biology, vol. 2, pp. 1–13, 2010.
[4]  F. Miralles and N. Visa, “Actin in transcription and transcription regulation,” Current Opinion in Cell Biology, vol. 18, no. 3, pp. 261–266, 2006.
[5]  I. A. Olave, S. L. Reck-Peterson, and G. R. Crabtree, “Nuclear actin and actin-related proteins in chromatin remodeling,” Annual Review of Biochemistry, vol. 71, pp. 755–781, 2002.
[6]  M. T. Bohnsack, T. Stüven, C. Kuhn, V. C. Cordes, and D. G?rlich, “A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes,” Nature Cell Biology, vol. 8, no. 3, pp. 257–263, 2006.
[7]  K. Funaki, T. Katsumoto, and A. Iino, “Immunocytochemical localization of actin in the nucleolus of rat oocytes,” Biology of the Cell, vol. 84, no. 3, pp. 139–146, 1995.
[8]  E. Nguyen, D. Besombes, and P. Debey, “Immunofluorescent localization of actin in relation to transcription sites in mouse pronuclei,” Molecular Reproduction and Development, vol. 50, no. 3, pp. 263–272, 1998.
[9]  I. Spector, N. R. Shochet, Y. Kashman, and A. Groweiss, “Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells,” Science, vol. 219, no. 4584, pp. 493–495, 1983.
[10]  P. Lénárt, C. P. Bacher, N. Daigle et al., “A contractile nuclear actin network drives chromosome congression in oocytes,” Nature, vol. 436, no. 7052, pp. 812–818, 2005.
[11]  Q. Y. Sun and H. Schatten, “Regulation of dynamic events by microfilaments during oocyte maturation and fertilization,” Reproduction, vol. 131, no. 2, pp. 193–205, 2006.
[12]  J. Azoury, K. W. Lee, V. Georget, P. Rassinier, B. Leader, and M. H. Verlhac, “Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments,” Current Biology, vol. 18, no. 19, pp. 1514–1519, 2008.
[13]  F. J. Longo and D. Y. Chen, “Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus,” Developmental Biology, vol. 107, no. 2, pp. 382–394, 1985.
[14]  B. Maro, M. H. Johnson, M. Webb, and G. Flash, “Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes the cytockeleton and the plasma membrane,” Journal of Embryology and Experimental Morphology, vol. 92, pp. 11–32, 1986.
[15]  J. van Blerkom and H. Bell, “Regulation of development in the fully grown mouse oocyte: chromosome-mediated temporal and spatial differentiation of the cytoplasm and plasma membrane,” Journal of Embryology and Experimental Morphology, vol. 93, pp. 213–238, 1986.
[16]  B. Maro and M. H. Verlhac, “Polar body formation: new rules for asymmetric divisions,” Nature Cell Biology, vol. 4, no. 12, pp. E281–E283, 2002.
[17]  S. Uchiyama, S. Kobayashi, H. Takata et al., “Proteome analysis of human metaphase chromosomes,” Journal of Biological Chemistry, vol. 280, no. 17, pp. 16994–17004, 2005.
[18]  N. A. Bogolyubova and I. O. Bogolyubova, “Actin localization in the nuclei of two-cell mouse embryos,” Tsitologiya, vol. 51, no. 8, pp. 663–669, 2009.
[19]  S. M. Gonsior, S. Platz, S. Buchmeier, et al., “Conformation difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody,” Journal of Cell Science, vol. 112, part 6, pp. 797–809, 1999.
[20]  K. Milankov and U. De Boni, “Cytochemical localization of actin and myosin aggregates in interphase nuclei in situ,” Experimental Cell Research, vol. 209, no. 2, pp. 189–199, 1993.
[21]  N. A. Bogolyubova and I. O. Bogolyubova, “Early mouse embryos as a new model for studying of a functional role of the nuclear actin,” Tsitologiya, vol. 52, no. 8, pp. 645–646, 2010.
[22]  L. Goldstein, C. Ko, and J. Errick, “Nuclear actin: an apparent association with condensed chromatin,” Cell Biology International Reports, vol. 1, no. 6, pp. 511–515, 1977.
[23]  D. Rungger, E. Rungger-Brandle, C. Chaponnier, and G. Gabbiani, “Intranuclear injection of anti-actin antibodies into Xenopus oocytes blocks chromosome condensation,” Nature, vol. 282, no. 5736, pp. 320–321, 1979.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133