Plants must carefully regulate their development in order to survive a wide range of conditions. Of particular importance to this is dormancy release, deciding when to grow and when not to, given these varying conditions. In order to better understand the growth release mechanism of dormant tissue at the molecular and physiological levels, molecular markers can be used. One gene family that has a long association with dormancy, which is routinely used as a marker for dormancy release, is DRM1/ARP (dormancy-associated gene-1/auxin-repressed protein). This plant-specific gene family has high sequence identity at the protein level throughout several plant species, but its function in planta remains undetermined. This review brings together and critically analyzes findings on the DRM1/ARP family from a number of species. We focus on the relevance of this gene as a molecular marker for dormancy, raising questions of what its role might actually be in the plant. 1. Introduction Plants are sessile; therefore, a number of mechanisms are elegantly managed in the plant to ensure its survival and optimisation in its given setting. Integral to this is the temporal and spatial determination of growth in relation to the surroundings. This growth may be vegetative, such as axillary budbreak and branch development, or floral, including flower and fruit development. To achieve this, cell division, cell elongation, or a combination of the two has been shown to play a pivotal role in plant growth regulation. Dormancy is a means of ensuring a plant’s long-term survival and is defined as the “transitory delay of visible growth that occurs in plant meristematic tissues” [1]. An example of this occurs in perennials over winter. When temperatures are low and daylight hours are limited, plants protect themselves by ceasing growth, waiting for the more favourable conditions of spring in which they focus their resources on growing and reproducing. As such, the key decisions around when to release dormant tissue from dormancy (dormancy release/shoot outgrowth/shoot branching) are an important mechanism for plant biologists to understand. Both perennial and annual plants (e.g., Arabidopsis) also undergo a type of dormancy known as apical dominance or paradormancy, where endogenous signals/hormones from the apical bud are received by lower axillary meristems, preventing their bud outgrowth. This phenomenon was first described in 1934 [2], when it was shown that axillary buds of decapitated plants were released from dormancy due to a lack of auxin flow down the stem. Since then, the
References
[1]
G. A. Lang, J. D. Early, G. C. Martin, and R. L. Darnell, “Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research,” HortScience, vol. 22, no. 3, pp. 371–377, 1987.
[2]
K. V. Thimann and F. Skoog, “On the inhibition of bud development and other functions of growth substances in Vicia faba,” Proceedings of the Royal Society of London, vol. 114, no. 789, pp. 317–339, 1934.
[3]
M. A. Domagalska and O. Leyser, “Signal integration in the control of shoot branching,” Nature Reviews Molecular Cell Biology, vol. 12, no. 4, pp. 211–221, 2011.
[4]
Y. Seto, H. Kameoka, S. Yamaguchi, and J. Kyozuka, “Recent advances in strigolactone research: chemical and biological aspects,” Plant and Cell Physiology, vol. 53, no. 11, pp. 1843–1853, 2012.
[5]
J. P. Stafstrom, B. D. Ripley, M. L. Devitt, and B. Drake, “Dormancy-associated gene expression in pea axillary buds. Cloning and expression of PsDRM1 and PsDRM2,” Planta, vol. 205, no. 4, pp. 547–552, 1998.
[6]
K. Tatematsu, S. Ward, O. Leyser, Y. Kamiya, and E. Nambara, “Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis,” Plant Physiology, vol. 138, no. 2, pp. 757–766, 2005.
[7]
M. Wood, G. M. Rae, R.-M. Wu et al., “Actinidia DRM1—an intrinsically disordered protein whose mRNA expression is inversely correlated with spring budbreak in kiwifruit,” PLoS ONE, vol. 8, no. 3, Article ID e57354, 2013.
[8]
D. P. Horvath, J. V. Anderson, W. S. Chao, and M. E. Foley, “Knowing when to grow: signals regulating bud dormancy,” Trends in Plant Science, vol. 8, no. 11, pp. 534–540, 2003.
[9]
X. Huang, T. Xue, S. Dai, S. Gai, C. Zheng, and G. Zheng, “Genes associated with the release of dormant buds in tree peonies (Paeonia suffruticosa),” Acta Physiologiae Plantarum, vol. 30, no. 6, pp. 797–806, 2008.
[10]
S. A. Finlayson, S. R. Krishnareddy, T. H. Kebrom, and J. J. Casal, “Phytochrome regulation of branching in Arabidopsis,” Plant Physiology, vol. 152, no. 4, pp. 1914–1927, 2010.
[11]
T. H. Kebrom, P. M. Chandler, S. M. Swain, R. W. King, R. A. Richards, and W. Spielmeyer, “Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development,” Plant Physiology, vol. 160, no. 1, pp. 308–318, 2012.
[12]
L. Mlynárová, J.-P. Nap, and T. Bisseling, “The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress,” The Plant Journal, vol. 51, no. 5, pp. 874–885, 2007.
[13]
S. A. Finlayson, “Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1,” Plant and Cell Physiology, vol. 48, no. 5, pp. 667–677, 2007.
[14]
G. Govind, H. Vokkaliga Thammegowda, P. Jayaker Kalaiarasi et al., “Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut,” Molecular Genetics and Genomics, vol. 281, no. 6, pp. 591–605, 2009.
[15]
Y. Soeda, M. C. J. M. Konings, O. Vorst et al., “Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level,” Plant Physiology, vol. 137, no. 1, pp. 354–368, 2005.
[16]
J. Lee, C.-T. Han, and Y. Hur, “Molecular characterization of the Brassica rapa auxin-repressed, superfamily genes, BrARP1 and BrDRM1,” Molecular Biology Reports, vol. 40, no. 1, pp. 197–209, 2013.
[17]
E. W. Hwang, K. A. Kim, S. C. Park, M. J. Jeong, M. O. Byun, and H. B. Kwon, “Expression profiles of hot pepper (Capsicum annuum) genes under cold stress conditions,” Journal of Biosciences, vol. 30, no. 5, pp. 657–667, 2005.
[18]
H. B. Kim, H. Lee, C. J. Oh, N. H. Lee, and C. S. An, “Expression of EuNOD-ARP1 encoding auxin-repressed protein homolog is upregulated by auxin and localized to the fixation zone in root nodules of Elaeagnus umbellata,” Molecules and Cells, vol. 23, no. 1, pp. 115–121, 2007.
[19]
A. S. N. Reddy and B. W. Poovaiah, “Molecular cloning and sequencing of a cDNA for an auxin-repressed mRNA: correlation between fruit growth and repression of the auxin-regulated gene,” Plant Molecular Biology, vol. 14, no. 2, pp. 127–136, 1990.
[20]
S. A. Lee, R. C. Gardner, and M. Lay-Yee, “An apple gene highly expressed in fruit,” Plant Physiology, vol. 103, no. 3, p. 1017, 1993.
[21]
S. Chakravarthy, A. C. Velásquez, S. K. Ekengren, A. Collmer, and G. B. Martin, “Identification of Nicotiana benthamiana genes involved in pathogen-associated molecular pattern-triggered immunity,” Molecular Plant-Microbe Interactions, vol. 23, no. 6, pp. 715–726, 2010.
[22]
C. Steiner, J. Bauer, N. Amrhein, and M. Bucher, “Two novel genes are differentially expressed during early germination of the male gametophyte of Nicotiana tabacum,” Biochimica et Biophysica Acta, vol. 1625, no. 2, pp. 123–133, 2003.
[23]
J. P. Stafstrom, “Regulation of growth and dormancy in pea axillary buds,” in Dormancy in Plants, J.-D. Viemont and J. Crabbé, Eds., pp. 331–346, CAB International, Wallingford, UK, 2000.
[24]
H.-Y. Shi, Y.-X. Zhang, and L. Chen, “Two pear auxin-repressed protein genes, PpARP1 and PpARP2, are predominantly expressed in fruit and involved in response to salicylic acid signaling,” Plant Cell, Tissue and Organ Culture, pp. 1–8, 2013.
[25]
S. Park and K. Han, “An auxin-repressed gene (RpARP) from black locust (Robinia pseudoacacia) is posttranscriptionally regulated and negatively associated with shoot elongation,” Tree Physiology, vol. 23, no. 12, pp. 815–823, 2003.
[26]
W. H. Vriezen, R. Feron, F. Maretto, J. Keijman, and C. Mariani, “Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set,” New Phytologist, vol. 177, no. 1, pp. 60–76, 2008.
[27]
T. H. Kebrom, B. L. Burson, and S. A. Finlayson, “Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals,” Plant Physiology, vol. 140, no. 3, pp. 1109–1117, 2006.
[28]
T. H. Kebrom, T. P. Brutnell, and S. A. Finlayson, “Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways,” Plant, Cell and Environment, vol. 33, no. 1, pp. 48–58, 2010.
[29]
A. K. Dunker, J. D. Lawson, C. J. Brown et al., “Intrinsically disordered protein,” Journal of Molecular Graphics and Modelling, vol. 19, no. 1, pp. 26–59, 2001.
[30]
L. M. Iakoucheva, C. J. Brown, J. D. Lawson, Z. Obradovi?, and A. K. Dunker, “Intrinsic disorder in cell-signaling and cancer-associated proteins,” Journal of Molecular Biology, vol. 323, no. 3, pp. 573–584, 2002.
[31]
Y. Minezaki, K. Homma, A. R. Kinjo, and K. Nishikawa, “Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation,” Journal of Molecular Biology, vol. 359, no. 4, pp. 1137–1149, 2006.
[32]
A. Garay-Arroyo, J. M. Colmenero-Flores, A. Garciarrubio, and A. A. Covarrubias, “Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit,” The Journal of Biological Chemistry, vol. 275, no. 8, pp. 5668–5674, 2000.
[33]
J. M. Mouillon, P. Gustafsson, and P. Harryson, “Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments,” Plant Physiology, vol. 141, no. 2, pp. 638–650, 2006.
[34]
S. Chakrabortee, C. Boschetti, L. J. Walton, S. Sarkar, D. C. Rubinsztein, and A. Tunnacliffe, “Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 46, pp. 18073–18078, 2007.
[35]
D. Kovacs, B. Agoston, and P. Tompa, “Disordered plant LEA proteins as molecular chaperones,” Plant Signaling and Behavior, vol. 3, no. 9, pp. 710–713, 2008.
[36]
D. Kovacs, E. Kalmar, Z. Torok, and P. Tompa, “Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins,” Plant Physiology, vol. 147, no. 1, pp. 381–390, 2008.
[37]
J. Petersen, S. K. Eriksson, P. Harryson et al., “The lysine-rich motif of intrinsically disordered stress protein CDeT11-24 from Craterostigma plantagineum is responsible for phosphatidic acid binding and protection of enzymes from damaging effects caused by desiccation,” Journal of Experimental Botany, vol. 63, no. 13, pp. 4919–4929, 2012.
[38]
G. S. Ross, M. L. Knighton, and M. Lay-Yee, “An ethylene-related cDNA from ripening apples,” Plant Molecular Biology, vol. 19, no. 2, pp. 231–238, 1992.
[39]
H. R. Woo, K. M. Chung, J. H. Park et al., “ORE9, an F-box protein that regulates leaf senescence in Arabidopsis,” Plant Cell, vol. 13, no. 8, pp. 1779–1790, 2001.
[40]
E. Breeze, E. Harrison, S. McHattie et al., “High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation,” Plant Cell, vol. 23, no. 3, pp. 873–894, 2011.
[41]
Y. Madoka and H. Mori, “Two novel transcripts expressed in pea dormant axillary buds,” Plant and Cell Physiology, vol. 41, no. 3, pp. 274–281, 2000.
[42]
J. D. Bewley, “Seed germination and dormancy,” Plant Cell, vol. 9, no. 7, pp. 1055–1066, 1997.
[43]
G. M. Simpson, Seed Dormancy in Grasses, Cambridge University Press, Cambridge, UK, 1990.
[44]
A. Rohde and R. P. Bhalerao, “Plant dormancy in the perennial context,” Trends in Plant Science, vol. 12, no. 5, pp. 217–223, 2007.
[45]
M. Schmid, T. S. Davison, S. R. Henz et al., “A gene expression map of Arabidopsis thaliana development,” Nature Genetics, vol. 37, no. 5, pp. 501–506, 2005.
[46]
J. M. Barrero, M. J. Talbot, R. G. White, J. V. Jacobsen, and F. Gubler, “Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in Barley,” Plant Physiology, vol. 150, no. 2, pp. 1006–1021, 2009.
[47]
E. M. Beyer and P. W. Morgan, “Effect of ethylene on the uptake, distribution, and metabolism of indoleacetic acid-1-14C and -2-14C and naphthaleneacetic acid-1-14C,” Plant Physiology, vol. 46, no. 1, pp. 157–162, 1970.
[48]
Y. Izumi, A. Okazawa, T. Bamba, A. Kobayashi, and E. Fukusaki, “Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry,” Analytica Chimica Acta, vol. 648, no. 2, pp. 215–225, 2009.
[49]
P. Gil and P. J. Green, “Multiple regions of the Arabidopsis SAUR-AC1 gene control transcript abundance: the untranslated region functions as an mRNA instability determinant,” The EMBO Journal, vol. 15, no. 7, pp. 1678–1686, 1996.
[50]
C. Y. A. Chen and A. B. Shyu, “AU-rich elements: characterization and importance in mRNA degradation,” Trends in Biochemical Sciences, vol. 20, no. 11, pp. 465–470, 1995.
[51]
S. Abel and A. Theologis, “Early genes and auxin action,” Plant Physiology, vol. 111, no. 1, pp. 9–17, 1996.
[52]
J. L. Key, N. M. Barnett, and C. Y. Lin, “RNA and protein biosynthesis and the regulation of cell elongation by auxin,” Annals of the New York Academy of Sciences, vol. 144, no. 1, pp. 49–62, 1967.
[53]
A. Theologis, T. V. Huynh, and R. W. Davis, “Rapid induction of specific mRNAs by auxin in pea epicotyl tissue,” Journal of Molecular Biology, vol. 183, no. 1, pp. 53–68, 1985.
[54]
A. Theologis and P. M. Ray, “Early auxin-regulated polyadenylylated mRNA sequences in pea stem tissue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 2, pp. 418–421, 1982.
[55]
Y. Zhao, S. K. Christensen, C. Fankhauser et al., “A role for flavin monooxygenase-like enzymes in auxin biosynthesis,” Science, vol. 291, no. 5502, pp. 306–309, 2001.
[56]
D. L. Lindsay, Cytokinin-induced gene expression in Arabidopsis [Degree of doctor of philosophy], Department of Biology, University of Saskatchewan, Saskatoon,Canada, 2006.
[57]
J. M. S. Healy, M. Menges, J. H. Doonan, and J. A. H. Murray, “The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent kinase Cdc2a but are differentially controlled,” The Journal of Biological Chemistry, vol. 276, no. 10, pp. 7041–7047, 2001.
[58]
E. A. Oakenfull, C. Riou-Khamlichi, and J. A. H. Murray, “Plant D-type cyclins and the control of G1 progression,” Philosophical Transactions of the Royal Society B, vol. 357, no. 1422, pp. 749–760, 2002.
[59]
W. S. Chao and M. D. Serpe, “Changes in the expression of carbohydrate metabolism genes during three phases of bud dormancy in leafy spurge,” Plant Molecular Biology, vol. 73, no. 1-2, pp. 227–239, 2010.
[60]
C. A. Lu, E. K. Lim, and S. M. Yu, “Sugar response sequence in the promoter of a rice α-amylase gene serves as a transcriptional enhancer,” The Journal of Biological Chemistry, vol. 273, no. 17, pp. 10120–10131, 1998.
[61]
E. Nambara, M. Okamoto, K. Tatematsu, R. Yano, M. Seo, and Y. Kamiya, “Abscisic acid and the control of seed dormancy and germination,” Seed Science Research, vol. 20, no. 2, pp. 55–67, 2010.
[62]
S. Gonzali, E. Loreti, C. Solfanelli, G. Novi, A. Alpi, and P. Perata, “Identification of sugar-modulated genes and evidence for in vivo sugar sensing in Arabidopsis,” Journal of Plant Research, vol. 119, no. 2, pp. 115–123, 2006.
[63]
A. C. Richardson, E. F. Walton, H. L. Boldingh, and J. S. Meekings, “Seasonal carbohydrate changes in dormant kiwifruit buds,” in Proceedings of the 6th International Symposium on Kiwifruit, vol. 753, pp. 567–572, 2007.