In Vivo Noninvasive Imaging of Healthy Lower Lip Mucosa: A Correlation Study between High-Definition Optical Coherence Tomography, Reflectance Confocal Microscopy, and Histology
In recent years, technology has allowed the development of new diagnostic techniques which allow real-time, in vivo, noninvasive evaluation of morphological changes in tissue. This study compares and correlates the images and findings obtained by high-definition optical coherence tomography (HD-OCT) and reflectance confocal microscopy (RCM) with histology in normal healthy oral mucosa. The healthy lip mucosa of ten adult volunteers was imaged with HD-OCT and RCM. Each volunteer was systematically evaluated by RCM starting in the uppermost part of the epithelium down to the lamina propia. Afterwards, volunteers were examined with a commercially available full-field HD-OCT system using both the “slice” and the “en-face” mode. A “punch” biopsy of the lower lip mucosa was obtained and prepared for conventional histology. The architectural overview offered by “slice” mode HD-OCT correlates with histologic findings at low magnification. In the superficial uppermost layers of the epithelium, RCM imaging provided greater cellular detail than histology. As we deepened into the suprabasal layers, the findings are in accordance with physiological cellular differentiation and correlate with the images obtained from conventional histology. The combined use of these two novel non-invasive imaging techniques provides morphological imaging with sufficient resolution and penetration depth, resulting in quasihistological images. 1. Introduction In recent years, technology has allowed the development of new diagnostic techniques which allow real-time, in vivo, noninvasive acquisition of images to evaluate morphological changes in tissue. These techniques include high-frequency ultrasound, reflectance confocal microscopy (RCM), and optical coherence tomography (OCT). The use of these technologies has proven to have application in ophthalmology [1], cardiology [2], gastroenterology [3], dermatology [4–6], and vascular surgery [7]. Oral malignancy is particularly high among men and the 8th most common cancer worldwide [8]. It represents about 2% of cancers in the UK [9] and 3% of all cancers in men and 2% of all cancers in women within the United States [10]. Squamous cell carcinoma accounts for about 90% of cases of oral cancer [11]. The majority of them develop from premalignant lesions, which generally appear as white patches (leukoplakia) or red patches (erythroplakia). Their malignant transformation rates are reported to be 0.9% to 17% and 14% to 50%, respectively [12]. The difficulty of determining whether such lesions are merely dysplasias or have already progressed
References
[1]
D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991.
[2]
S. K. Nadkarni, M. C. Pierce, B. H. Park et al., “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” Journal of the American College of Cardiology, vol. 49, no. 13, pp. 1474–1481, 2007.
[3]
B. J. Vakoc, M. Shishko, S. H. Yun et al., “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointestinal Endoscopy, vol. 65, no. 6, pp. 898–905, 2007.
[4]
C. Carrera, S. Puig, and J. Malvehy, “In vivo confocal reflectance microscopy in melanoma,” Dermatology and Therapy, vol. 25, pp. 410–422, 2012.
[5]
M. Boone, G. B. Jemec, and V. Del Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Experimental Dermatology, vol. 21, pp. 740–744, 2012.
[6]
T. Maier, M. Braun-Falco, T. Hinz, M. H. Schmid-Wendtner, T. Ruzicka, and C. Berking, “Morphology of basal cell carcinoma in high definition optical coherence tomography: En-face and slice imaging mode, and comparison with histology,” Journal of the European Academy of Dermatology and Venereology, vol. 27, no. 1, pp. 97–104, 2012.
[7]
N. A. Patel, X. Li, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Guidance of aortic ablation using optical coherence tomography,” International Journal of Cardiovascular Imaging, vol. 19, no. 2, pp. 171–178, 2003.
[8]
P. E. Petersen, “Strengthening the prevention of oral cancer: the WHO perspective,” Community Dentistry and Oral Epidemiology, vol. 33, no. 6, pp. 397–399, 2005.
[9]
Z. Hamdoon, W. Jerjes, R. Al-Delayme, G. McKenzie, A. Jay, and C. Hooper, “Structural validation of oral mucosal tissue using optical coherence tomography,” Head & Neck Oncology, vol. 4, p. 29, 2012.
[10]
J. M. Ridgway, W. B. Armstrong, S. Guo et al., “In vivo optical coherence tomography of the human oral cavity and oropharynx,” Archives of Otolaryngology—Head and Neck Surgery, vol. 132, no. 10, pp. 1074–1081, 2006.
[11]
J. S. Cooper, K. Porter, K. Mallin et al., “National cancer database report on cancer of the head and neck: 10-year update,” Head and Neck, vol. 31, no. 6, pp. 748–758, 2009.
[12]
S. Grajewski, D. Quarcoo, S. Uibel, C. Scutaru, D. Groneberg, and M. Spallek, “A scientometric analysis of leukoplakia and erythroplakia,” Laryngo-Rhino-Otologie, vol. 89, no. 4, pp. 210–215, 2010.
[13]
D. P. Slaughter, H. W. Southwick, and W. Smejkal, “Field cancerization in oral stratified squamous epithelium; clinical,” Cancer, vol. 6, no. 5, pp. 963–968, 1953.
[14]
M. DeCoro and P. Wilder-Smith, “Potential of optical coherence tomography for early diagnosis of oral malignancies,” Expert Review of Anticancer Therapy, vol. 10, no. 3, pp. 321–329, 2010.
[15]
P. Wilder-Smith, W.-G. Jung, M. Brenner et al., “In vivo optical coherence tomography for the diagnosis of oral malignancy,” Lasers in Surgery and Medicine, vol. 35, no. 4, pp. 269–275, 2004.
[16]
H. Kawakami-Wong, S. Gu, M. J. Hammer-Wilson, J. B. Epstein, Z. Chen, and P. Wilder-Smith, “In vivo optical coherence tomography-based scoring of oral mucositis in human subjects: a pilot study,” Journal of Biomedical Optics, vol. 12, no. 5, Article ID 051702, 2007.
[17]
M. T. Tasi, C. K. Lee, H. C. Lee, et al., “Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography,” Journal of Biomedical Optics, vol. 14, Article ID 044028, 2009.
[18]
M. W. White, M. Rajadhyaksha, S. González, R. L. Fabian, and R. R. Anderson, “Noninvasive imaging of human oral mucosa in vivo by confocal reflectance microscopy,” Laryngoscope, vol. 109, no. 10, pp. 1709–1717, 1999.
[19]
M. Contaldo, M. Agozzino, E. Moscarella, S. Esposito, R. Serpico, and M. Ardigo, “In vivo characterization of healthy oral mucosa by reflectance confocal microscopy: a translational research for optical biopsy,” Ultrastructural Pathology, vol. 37, pp. 151–158, 2013.