Objectives and Methods. Several researchers have provided support for the critical role of cognitive vulnerabilities in the development of depression. The Attitudes toward Self-Revised (ATS-R) was designed to assess three potential self-regulatory vulnerabilities to depression: High Standards (HS), Self-Criticism (SC), and Negative Generalization (NG). The aim of the study was to assess the psychometric properties of the ATS-R in the Italian young adult population. The ATS-R, the Beck Depression Inventory-II (BDI-II), the Beck Hopelessness Scale (BHS), and the Teate Depression Inventory (TDI) were administered to 857 (320 men and 537 women) young adults. Results. The best-fitting solution for the ATS-R was a 2-factor model, which obtained satisfactory homogeneity of content (HS/SC: Cronbach ; mean interitem correlation = 0.46. NG: Cronbach ; mean interitem correlation = 0.43) and significant correlation with the BDI-II (NG: Pearson , ), the TDI (HS/SC: Pearson , ), and the BHS (HS/SC: Pearson , ; NG: Pearson , ). Conclusions. The Italian version of the ATS-R seems to be a valid instrument for the study of the role of cognitive tendencies as potential vulnerability for depression. 1. Introduction Depression involves a wide variety of pathological conditions which vary along a continuum from more mild to more severe and persistent forms, such as major depressive disorder (MDD). MDD is the most widespread psychiatric disorder in the world [1–4], although its prevalence differs between countries around the world [5]. At the end of the eighties, the Epidemiological Catchment Area (ECA) study investigated the prevalence of MDD in the US general population and reported 30-day prevalence rates ranging between 1.7% and 3.4% [6]. More recently, the National Comorbidity Survey Replication (NCS-R) estimated a 12-month prevalence of 6.6% [7]. In Italy, the European study on the Epidemiology of Mental Disorders (ESEMeD) estimated rates of 3.0% and 10.0%, respectively, for the 12-month and lifetime MDD prevalence [8]. MDD is one of the major causes of disability, currently estimated as the fourth cause for the global burden of diseases [9, 10], and expected to become the second one within the year 2020 [9]. Numerous etiological models have been proposed and studied to explain how individuals become depressed. Cognitive theories of depression postulate that the dysfunctional interpretation of a life event may lead the individual to be vulnerable to depression following the occurrence of the stressful event. The most renowned cognitive theories of depression are the
References
[1]
D. S. Hasin, R. D. Goodwin, F. S. Stinson, and B. F. Grant, “Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on Alcoholism and Related Conditions,” Archives of General Psychiatry, vol. 62, no. 10, pp. 1097–1106, 2005.
[2]
C. Blanco, M. Okuda, J. C. Markowitz, S.-M. Liu, B. F. Grant, and D. S. Hasin, “The epidemiology of chronic major depressive disorder and dysthymic disorder: results from the national epidemiologic survey on alcohol and related conditions,” Journal of Clinical Psychiatry, vol. 71, no. 12, pp. 1645–1656, 2010.
[3]
V. Lehtinen and M. Joukamaa, “Epidemiology of depression: prevalence, risk factors and treatment situation,” Acta Psychiatrica Scandinavica, vol. 89, no. 377, pp. 7–10, 1994.
[4]
M. M. Ohayon, “Epidemiology of depression and its treatment in the general population,” Journal of Psychiatric Research, vol. 41, no. 3-4, pp. 207–213, 2007.
[5]
M. M. Weissman, R. C. Bland, G. J. Canino et al., “Cross-national epidemiology of major depression and bipolar disorder,” Journal of the American Medical Association, vol. 276, no. 4, pp. 293–299, 1996.
[6]
D. A. Regier, J. H. Boyd, J. D. Burke Jr. et al., “One-month prevalence of mental disorders in the United States, based on five epidemiologic catchment area sites,” Archives of General Psychiatry, vol. 45, no. 11, pp. 977–986, 1988.
[7]
R. C. Kessler, P. Berglund, O. Demler et al., “The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R),” Journal of the American Medical Association, vol. 289, no. 23, pp. 3095–3105, 2003.
[8]
G. de Girolamo, G. Polidori, P. Morosini, et al., “La prevalenza dei disturbi mentali in italia. Il progetto ESEMED-WMH,” Una sintesi. Roma: Centro Nazionale di Epidemiologia, Sorveglianza e Promozione della Salute, 2005.
[9]
World Health Organisation, “Depression. What is depression?” World Health Organisation, Geneva, Switzerland, 2011, http://www.who.int/mental_health/management/depression/definition/en/index1.html.
[10]
T. B. üstün, J. L. Ayuso-Mateos, S. Chatterji, C. Mathers, and C. J. L. Murray, “Global burden of depressive disorders in the year 2000,” British Journal of Psychiatry, vol. 184, pp. 386–392, 2004.
[11]
L. Y. Abramson, G. I. Metalsky, and L. B. Alloy, “Hopelessness depression: a theory-based subtype of depression,” Psychological Review, vol. 96, no. 2, pp. 358–372, 1989.
[12]
A. T. Beck, Depression: Clinical, Experimental, and Theoretical Aspects, Harper & Row, New York, NY, USA, 1967.
[13]
A. T. Beck, “Cognitive models of depression,” Journal of Cognitive Psychotherapy, vol. 1, pp. 5–37, 1987.
[14]
M. Zhong, X. Wang, J. Xiao et al., “Amygdala hyperactivation and prefrontal hypoactivation in subjects with cognitive vulnerability to depression,” Biological Psychology, vol. 88, no. 2-3, pp. 233–242, 2011.
[15]
L. Y. Abramson, L. B. Alloy, B. L. Hankin, et al., “Cognitive vulnerability-stress models of depression in a self-regulatory and psychobiological context,” in Handbook of Depression, I. H. Gotlib and C. L. Hammen, Eds., pp. 268–294, The Guilford Press, New York, NY, USA, 2002.
[16]
L. B. Alloy, L. Y. Abramson, W. G. Whitehouse, M. E. Hogan, C. Panzarella, and D. T. Rose, “Prospective incidence of first onsets and recurrences of depression in individuals at high and low cognitive risk for depression,” Journal of Abnormal Psychology, vol. 115, no. 1, pp. 145–156, 2006.
[17]
B. M. Iacoviello, L. B. Alloy, L. Y. Abramson, W. G. Whitehouse, and M. E. Hogan, “The course of depression in individuals at high and low cognitive risk for depression: a prospective study,” Journal of Affective Disorders, vol. 93, no. 1–3, pp. 61–69, 2006.
[18]
J. Evans, J. Heron, G. Lewis, R. Araya, and D. Wolke, “Negative self-schemas and the onset of depression in women: longitudinal study,” British Journal of Psychiatry, vol. 186, pp. 302–307, 2005.
[19]
C. S. Carver and R. J. Ganellen, “Depression and components of self-punitiveness: high standards, self-criticism, and overgeneralization,” Journal of Abnormal Psychology, vol. 92, no. 3, pp. 330–337, 1983.
[20]
C. S. Carver, L. La Voie, J. Kuhl, et al., “Cognitive concomitants of depression: a further examination of the roles of generalization, high standards, and self-criticism,” Journal of Social and Clinical Psychology, vol. 7, pp. 350–365, 1988.
[21]
C. S. Carver, “Generalization, adverse events, and development of depressive symptoms,” Journal of Personality, vol. 66, no. 4, pp. 606–619, 1998.
[22]
A. M. Hayes, M. S. Harris, and C. S. Carver, “Predictors of self-esteem variability,” Cognitive Therapy and Research, vol. 28, no. 3, pp. 369–385, 2004.
[23]
L. R. Eisner, S. L. Johnson, and C. S. Carver, “Cognitive responses to failure and success relate uniquely to bipolar depression versus mania,” Journal of Abnormal Psychology, vol. 117, no. 1, pp. 154–163, 2008.
[24]
C. S. Carver and S. L. Johnson, “Tendencies toward mania and tendencies toward depression have distinct motivational, affective, and cognitive correlates,” Cognitive Therapy and Research, vol. 33, no. 6, pp. 552–569, 2009.
[25]
M. Balsamo and A. Saggino, Il Teate Depression Inventory—Manuale di Standardizzazione, Hoegrefe, Berne, Germany.
[26]
A. T. Beck, A. Weissman, D. Lester, and L. Trexler, “The measurement of pessimism: the hopelessness scale,” Journal of Consulting and Clinical Psychology, vol. 42, no. 6, pp. 861–865, 1974.
[27]
C. S. Carver, R. J. Ganellen, and V. Behar-Mitrani, “Depression and cognitive style. Comparisons between measures,” Journal of Personality and Social Psychology, vol. 49, no. 3, pp. 722–728, 1985.
[28]
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, Washington, DC, USA, 4th edition, 2000.
[29]
P. A. Arbisi, “Review of the beck depression inventory-II,” in The 14th Mental Measurements Yearbook, B. S. Plake and J. C. Impara, Eds., Buros Institute of Mental Measurements, Lincoln, Neb, USA, 2001.
[30]
M. Balsamo and A. Saggino, “Test per l’assessment della depressione nel contesto italiano: un’analisi critica,” Psicoterapia Cognitiva e Comportamentaie, vol. 13, pp. 167–199, 2007.
[31]
A. T. Beck, G. Brown, R. J. Berchick, B. L. Stewart, and R. A. Steer, “Relationship between hopelessness and ultimate suicide: a replication with psychiatric outpatients,” American Journal of Psychiatry, vol. 147, no. 2, pp. 190–195, 1990.
[32]
E. David Klonsky, R. Kotov, S. Bakst, J. Rabinowitz, and E. J. Bromet, “Hopelessness as a predictor of attempted suicide among first admission patients with psychosis: a 10-year cohort study,” Suicide and Life-Threatening Behavior, vol. 42, no. 1, pp. 1–10, 2012.
[33]
M. Bouvard, S. Charles, J. Guerin, G. Aimard, and J. Cottraux, “Study of Beck's hopelessness scale. Validation and factor analysis,” L'Encephale, vol. 18, no. 3, pp. 237–240, 1992.
[34]
M. Innamorati, M. Pompili, X. Gonda et al., “Psychometric properties of the Gotland Scale for Depression in Italian psychiatric inpatients and its utility in the prediction of suicide risk,” Journal of Affective Disorders, vol. 132, no. 1-2, pp. 99–103, 2011.
[35]
M. Innamorati, M. Pompili, G. Serafini et al., “Psychometric properties of the suicidal history self-rating screening scale,” Archives of Suicide Research, vol. 15, no. 1, pp. 87–92, 2011.
[36]
M. Pompili, R. Tatarelli, J. R. Rogers, and D. Lester, “The hopelessness scale: a factor analysis,” Psychological Reports, vol. 100, no. 2, pp. 375–378, 2007.
[37]
M. Pompili, P. Iliceto, D. Lester, et al., BHS Beck Hopelessness Scale: Manuale, Giunti O.S. Organizzazioni Speciali, Firenze, Italy, 2009.
[38]
G. Rasch, Probabilistic Models for Some Intelligence and Attainment Tests, University of Chicago Press, Chicago, Ill, USA, 1980.
[39]
D. Andrich, “Models for measurement, precision, and the nondichotomization of graded responses,” Psychometrika, vol. 60, no. 1, pp. 7–26, 1995.
[40]
B. P. O'Connor, “SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test,” Behavior Research Methods, Instruments, and Computers, vol. 32, no. 3, pp. 396–402, 2000.
[41]
W. F. Velicer, “Determining the number of components from the matrix of partial correlations,” Psychometrika, vol. 41, no. 3, pp. 321–327, 1976.
[42]
R. D. Ledesma and P. Valero-Mora, “Determining the number of factors to retain in EFA: an easy-to-use computer program for carrying out Parallel Analysis,” Practical Assessment, Research & Evaluation, vol. 12, pp. 1–11, 2007.
[43]
K. G. J?reskog and D. S?rbom, “LISREL for Windows [Computer software],” Lincolnwood, Ill, USA, Scientific Software International, 2006.
[44]
M. W. Browne and R. Cudek, “Alternative ways of assessing model fit,” in Testing Structural Equation Models, J. S. Long, Ed., pp. 136–162, Sage, Newbury Park, Calif, USA, 1993.
[45]
L.-T. Hu and P. M. Bentler, “Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives,” Structural Equation Modeling, vol. 6, no. 1, pp. 1–55, 1999.
[46]
K. G. Joreskog and D. Sorbom, LISREL 7: User's Reference Guide, Scientific Software, Mooresville, Ind, USA, 1989.
[47]
F. J. Floyd and K. F. Widaman, “Factor analysis in the development and refinement of clinical assessment instruments,” Psychological Assessment, vol. 7, no. 3, pp. 286–299, 1995.
[48]
J. C. Nunnally and I. H. Bernstein, Psychometric Theory, McGraw-Hill, New York, NY, USA, 3rd edition, 1994.