Alterations of Hormone-Sensitive Adenylyl Cyclase System in the Tissues of Rats with Long-Term Streptozotocin Diabetes and the Influence of Intranasal Insulin
One of the causes of complications in type 1 diabetes mellitus (T1DM) is the changes in adenylyl cyclase (AC) signaling system, identified on the early stages of the disease. However, the most significant disturbances in this system occur on the later stages of T1DM, which ultimately leads to severe complications, but functional state of the AC system in late T1DM is poorly understood. The aim of this work was to study alterations in AC system sensitive to biogenic amines and polypeptide hormones in the heart, brain, and testes of male rats with long-term, 7-month, streptozotocin T1DM and to assess the influence on them of 135-day therapy with intranasal insulin. It was shown that AC effects of -adrenergic agonists in the heart, serotonin receptor agonists and PACAP-38 in the brain, chorionic gonadotropin and PACAP-38 in the testes, and somatostatin in all investigated tissues in long-term T1DM were drastically decreased. The treatment with intranasal insulin (0.48?IU/day) significantly restored these effects. The results were obtained suggesting that long-term T1DM induces significant alterations in hormone-sensitive AC system in the heart, brain, and testes that are much more pronounced, compared with short-term T1DM, and include a large number of hormonal regulations. 1. Introduction The type 1 diabetes mellitus (T1DM), one of the most severe metabolic disorders in humans, characterized by hyperglycemia due to a relative or an absolute lack of insulin, leads to many complications, such as coronary heart diseases, hypertension, atherosclerosis, neurodegenerative diseases, cognitive deficit, and dysfunctions of the reproductive system [1, 2]. One of the causes of these complications is the alterations in hormone-sensitive signaling systems, the adenylyl cyclase (AC) system in particular [3, 4]. It was shown that changes in the functional activity of AC system in the heart, brain, and reproductive tissues in experimental T1DM were tissue and hormone specific [5–10]. Generally, the effects of hormones acting on AC via G proteins of the inhibitory type ( ) were changed to a greater degree compared with those realized via G proteins of the stimulating type ( ), likely due to a decrease of proteins expression and a reduction of their functional activity and coupling with upstream and downstream signal proteins. The degree of alterations and abnormalities in hormonal signaling systems is well correlated with the severity of T1DM and its complications [11, 12]. As a result, at the later stages of the disease characterized by pronounced clinical symptoms,
References
[1]
M. C. Stiles and E. R. Seaquist, “Cerebral structural and functional changes in type 1 diabetes,” Minerva Medica, vol. 101, no. 2, pp. 105–114, 2010.
[2]
C. E. Tabit, W. B. Chung, N. M. Hamburg, and J. A. Vita, “Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications,” Reviews in Endocrine and Metabolic Disorders, vol. 11, no. 1, pp. 61–74, 2010.
[3]
A. O. Shpakov, O. V. Chistiakova, K. V. Derkach, and V. M. Bondareva, “Hormonal signaling systems of the brain in diabetes mellitus,” in Neurodegenerative Diseases—Processes, Prevention, Protection and Monitoring, R. C. C. Chang, Ed., pp. 349–386, Intech Open Access Publisher, Rijeka, Croatia, 2011.
[4]
V. M. Altan, E. Arioglu, S. Guner, and A. T. Ozcelikay, “The influence of diabetes on cardiac β-adrenoceptor subtypes,” Heart Failure Reviews, vol. 12, no. 1, pp. 58–65, 2007.
[5]
A. Wichelhaus, M. Russ, S. Petersen, and J. Eckel, “G protein expression and adenylate cyclase regulation in ventricular cardiomyocytes from STZ-diabetic rats,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 267, no. 2, pp. H548–H555, 1994.
[6]
S. Gando, Y. Hattori, Y. Akaishi, J. Nishihira, and M. Kanno, “Impaired contractile response to beta adrenoceptor stimulation in diabetic rat hearts: alterations in beta adrenoceptors-G protein-adenylate cyclase system and phospholamban phosphorylation,” Journal of Pharmacology and Experimental Therapeutics, vol. 282, no. 1, pp. 475–484, 1997.
[7]
L. P. Weber and K. M. Macleod, “Influence of streptozotocin diabetes on the α-1 adrenoceptor and associated G proteins in rat arteries,” Journal of Pharmacology and Experimental Therapeutics, vol. 283, no. 3, pp. 1469–1478, 1997.
[8]
A. O. Shpakov, L. A. Kuznetsova, S. A. Plesneva, I. A. Gur'ianov, and M. N. Pertseva, “Molecular causes of changes in sensitivity of adenylyl cyclase signaling system to biogenic amines in the heart muscle during experimental streptozotocin diabetes,” Tsitologiia., vol. 47, no. 6, pp. 540–548, 2005.
[9]
A. O. Shpakov, L. A. Kuznetsova, S. A. Plesneva et al., “Functional defects in adenylyl cyclase signaling mechanisms of insulin and relaxin in skeletal muscles of rat with streptozotocin type 1 diabetes,” Central European Journal of Biology, vol. 1, no. 4, pp. 530–544, 2006.
[10]
A. O. Shpakov, V. M. Bondareva, and O. V. Chistyakova, “Functional state of adenylyl cyclase signaling system in reproductive tissues of rats with experimental type 1 diabetes,” Tsitologiya, vol. 52, no. 2, pp. 177–183, 2010.
[11]
U. D. Din?er, K. R. Bidasee, S. Güner, A. Tay, A. T. ?z?elikay, and V. M. Altan, “The effect of diabetes on expression of β1-, β2-, and β3-adrenoreceptors in rat hearts,” Diabetes, vol. 50, no. 2, pp. 455–461, 2001.
[12]
B. Savitha, B. Joseph, T. P. Kumar, and C. S. Paulose, “Acetylcholine and muscarinic receptor function in cerebral cortex of diabetic young and old male wistar rats and the role of muscarinic receptors in calcium release from pancreatic islets,” Biogerontology, vol. 11, no. 2, pp. 151–166, 2010.
[13]
R. I. Henkin, “Intranasal insulin: from nose to brain,” Nutrition, vol. 26, no. 6, pp. 624–633, 2010.
[14]
C. Benedict, W. H. Frey, H. B. Schi?th, B. Schultes, J. Born, and M. Hallschmid, “Intranasal insulin as a therapeutic option in the treatment of cognitive impairments,” Experimental Gerontology, vol. 46, no. 2-3, pp. 112–115, 2011.
[15]
U. Stockhorst, D. de Fries, H. J. Steingrueber, and W. A. Scherbaum, “Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans,” Physiology and Behavior, vol. 83, no. 1, pp. 47–54, 2004.
[16]
A. O. Shpakov, O. V. Chistyakova, K. V. Derkach, I. V. Moiseyuk, and V. M. Bondareva, “Intranasal insulin affects adenylyl cyclase system in rat tissues in neonatal diabetes,” Central European Journal of Biology, vol. 7, no. 1, pp. 33–47, 2012.
[17]
E. S. Khafagy, M. Morishita, Y. Onuki, and K. Takayama, “Current challenges in non-invasive insulin delivery systems: a comparative review,” Advanced Drug Delivery Reviews, vol. 59, no. 15, pp. 1521–1546, 2007.
[18]
G. J. Francis, J. A. Martinez, W. Q. Liu et al., “Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy,” Brain, vol. 131, no. 12, pp. 3311–3334, 2008.
[19]
“Guidelines for the treatment of animals in behavior research and teaching,” Animal Behaviour, vol. 71, no. 1, pp. 245–253, 2006.
[20]
R. G. Thorne, G. J. Pronk, V. Padmanabhan, and W. H. Frey II, “Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration,” Neuroscience, vol. 127, no. 2, pp. 481–496, 2004.
[21]
S. P. Baker and L. T. Potter, “A minor component of the binding of [3H]guanyl-5′-yl imidodiphosphate to cardiac membranes associated with the activation of adenylate cyclase,” The Journal of Biological Chemistry, vol. 256, no. 15, pp. 7925–7931, 1981.
[22]
A. O. Shpakov, E. A. Shpakova, I. I. Tarasenko, K. V. Derkach, and G. P. Vlasov, “The peptides mimicking the third intracellular loop of 5-hydroxytryptamine receptors of the types 1B and 6 selectively activate G proteins and receptor-specifically inhibit serotonin signaling via the adenylyl cyclase system,” International Journal of Peptide Research and Therapeutics, vol. 16, no. 2, pp. 95–105, 2010.
[23]
A. O. Shpakov, E. A. Shpakova, I. I. Tarasenko et al., “The influence of peptides corresponding to the third intracellular loop of luteinizing hormone receptor on basal and hormone-stimulated activity of the adenylyl cyclase signaling system,” Global Journal of Biochemistry, vol. 2, no. 1, pp. 59–73, 2011.
[24]
O. V. Chistyakova, V. M. Bondareva, V. N. Shipilov, I. B. Sukhov, and A. O. Shpakov, “A positive effect of intranasal insulin on spatial memory in rats with neonatal diabetes mellitus,” Endocrinology Studies, vol. 1, article e16, 2011.
[25]
A. O. Shpakov, L. A. Kuznetsova, S. A. Plesneva, I. A. Gur'ianov, G. P. Vlasov, and M. N. Pertseva, “Identifications of disturbances in hormone-sensitive adenylyl cyclase system in the tissues of rats with types 1 and 2 diabetes using functional probes and synthetic peptides,” Tekhnologii Zhivykh Sistem, vol. 4, pp. 96–108, 2005.
[26]
K. R. Bidasee, H. Zheng, C. H. Shao, S. K. Parbhu, G. J. Rozanski, and K. P. Patel, “Exercise training initiated after the onset of diabetes preserves myocardial function: effects on expression of β-adrenoceptors,” Journal of Applied Physiology, vol. 105, no. 3, pp. 907–914, 2008.
[27]
U. D. Din?er, A. Onay, N. Ari, A. T. ?z?elikay, and V. M. Altan, “The effects of diabetes on β-adrenoceptor mediated responsiveness of human and rat atria,” Diabetes Research and Clinical Practice, vol. 40, no. 2, pp. 113–122, 1998.
[28]
B. Marcos, M. García-Alloza, F. J. Gil-Bea et al., “Involvement of an altered 5-HT6 receptor function in behavioral symptoms of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 14, no. 1, pp. 43–50, 2008.
[29]
K. Tully and V. Y. Bolshakov, “Emotional enhancement of memory: how norepinephrine enables synaptic plasticity,” Molecular Brain, vol. 3, no. 1, pp. 15–23, 2010.
[30]
A. D. Mooradian and P. J. Scarpace, “β-Adrenergic receptor activity of cerebral microvessels in experimental diabetes mellitus,” Brain Research, vol. 583, no. 1-2, pp. 155–160, 1992.
[31]
D. Reglodi, P. Kiss, A. Lubics, and A. Tamas, “Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo,” Current Pharmaceutical Design, vol. 17, no. 10, pp. 962–972, 2011.
[32]
C. Benedict, M. Hallschmid, A. Hatke et al., “Intranasal insulin improves memory in humans,” Psychoneuroendocrinology, vol. 29, no. 10, pp. 1326–1334, 2004.
[33]
M. P. Abbracchio, M. Di Luca, A. M. Di Giulio, F. Cattabeni, B. Tenconi, and A. Gorio, “Denervation and hyperinnervation in the nervous system of diabetic animals: III. Functional alterations of G proteins in diabetic encephalopathy,” Journal of Neuroscience Research, vol. 24, no. 4, pp. 517–523, 1989.
[34]
R. Robinson, A. Krishnakumar, and C. S. Paulose, “Enhanced dopamine D1 and D2 receptor gene expression in the hippocampus of hypoglycaemic and diabetic rats,” Cellular and Molecular Neurobiology, vol. 29, no. 3, pp. 365–372, 2009.
[35]
M. J. Carmena, C. Clemente, L. G. Guijarro, and J. C. Prieto, “The effect of streptozotocin diabetes on the vasoactive intestinal peptide receptor/effector system in membranes from rat ventral prostate,” Endocrinology, vol. 131, no. 4, pp. 1993–1998, 1992.
[36]
M. S. Rodriguez-Pena, L. G. Guijarro, M. G. Juarranz et al., “Analysis of vasoactive intestinal peptide receptors and the G protein regulation of adenylyl cyclase in seminal vesicle membranes from streptozotocin-diabetic rats,” Cellular Signalling, vol. 6, no. 2, pp. 147–156, 1994.
[37]
J. X. Li and C. P. France, “Food restriction and streptozotocin treatment decrease 5-HT1A and 5-HT2A receptor-mediated behavioral effects in rats,” Behavioural Pharmacology, vol. 19, no. 4, pp. 292–297, 2008.
[38]
L. Lanfumey and M. Hamon, “5-HT1 receptors,” Current Drug Targets: CNS and Neurological Disorders, vol. 3, no. 1, pp. 1–10, 2004.
[39]
J. F. Bruno, Y. Xu, J. Song, and M. Berelowitz, “Pituitary and hypothalamic somatostatin receptor subtype messenger ribonucleic acid expression in the food-deprived and diabetic rat,” Endocrinology, vol. 135, no. 5, pp. 1787–1792, 1994.
[40]
S. Gao, Y. B. Oh, A. Shah, W. H. Park, and S. H. Kim, “Suppression of ANP secretion by somatostatin through somatostatin receptor type 2,” Peptides, vol. 32, no. 6, pp. 1179–1186, 2011.
[41]
J. T. Yue, E. Burdett, D. H. Coy, A. Giacca, S. Efendic, and M. Vranic, “Somatostatin receptor type 2 antagonism improves glucagon and corticosterone counterregulatory responses to hypoglycemia in streptozotocin-induced diabetic rats,” Diabetes, vol. 61, no. 1, pp. 197–207, 2012.
[42]
G. M. Portela-Gomes, L. Grimelius, P. Westermark, and M. Stridsberg, “Somatostatin receptor subtypes in human type 2 diabetic islets,” Pancreas, vol. 39, no. 6, pp. 836–842, 2010.