Neurogenomics of the Sympathetic Neurotransmitter Switch Indicates That Different Mechanisms Steer Cholinergic Differentiation in Rat and Chicken Models
Vertebrate sympathetic neurons have the remarkable potential to switch their neurotransmitter phenotype from noradrenergic to cholinergic—a phenomenon that has been intensively studied in rat and chicken models. In both species, loss of noradrenergic markers and concomitant upregulation of cholinergic markers occurs in response to neuropoietic cytokines such as ciliary neurotrophic factor (CNTF). However, other aspects of the neurotransmitter switch including developmental timing, target tissues of cholinergic neurons, and dependence on neurotrophic factors differ between the two species. Here we compare CNTF-triggered transcriptome changes in both species by using DNA microarrays. CNTF induced changes in 1130 out of 16084 analyzed genomic loci in rat sympathetic neurons. When this set of genes was compared to CNTF-induced changes in the chicken transcriptome, a surprisingly small overlap was found—only 94 genes were regulated in the same direction in chicken and rat. The differential responses of the transcriptome to neuropoietic cytokines provide additional evidence that the cholinergic switch, although conserved during vertebrate evolution, is a heterogeneous phenomenon and may result from differential cellular mechanisms. 1. Introduction Transmitter phenotypes are specified at defined stages during neuronal development through coordinated expression of complex sets of gene products, involved in the synthesis and transport of transmitters [1]. Once specified, the neurotransmitter phenotype remains permanently unaltered for most cell types. Rodent sympathetic neurons are a notable exception since they can transdifferentiate from a fully functional noradrenergic to a cholinergic phenotype in vitro and in vivo [2, 3]. This neurotransmitter switch serves as a textbook example of plasticity in postmitotic neurons and depends on growth factor signalling [4, 5]. The first identified cholinergic differentiation factors are ligands of the gp130/LIFRβ receptor complex and belong to the family of neuropoietic cytokines [6]. In vivo gp130/LIFRβ ligands are secreted from the target structure of cholinergic sympathetic neurons such as eccrine sweat glands [7]. In vitro, the sympathetic superior cervical ganglion (SCG) neurons dissected from postnatal rats represent the best studied model for cholinergic sympathetic development. These noradrenergic cells, upon exposure to neuropoietic cytokines such as ciliary neurotrophic factor (CNTF) or leukaemia inhibitory factor (LIF), downregulate markers for the noradrenalin synthesis including the tyrosine hydroxylase (Th)
References
[1]
C. Goridis and J. F. Brunet, “Transcriptional control of neurotransmitter phenotype,” Current Opinion in Neurobiology, vol. 9, no. 1, pp. 47–53, 1999.
[2]
M. J. Fann and P. H. Patterson, “Neuropoietic cytokines and activin A differentially regulate the phenotype of cultured sympathetic neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 1, pp. 43–47, 1994.
[3]
R. Schotzinger, X. Yin, and S. Landis, “Target determination of neurotransmitter phenotype in sympathetic neurons,” Journal of Neurobiology, vol. 25, no. 6, pp. 620–639, 1994.
[4]
U. Ernsberger and H. Rohrer, “Development of the cholinergic neurotransmitter phenotype in postganglionic sympathetic neurons,” Cell and Tissue Research, vol. 297, no. 3, pp. 339–361, 1999.
[5]
N. J. Francis and S. C. Landis, “Cellular and molecular determinants of sympathetic neuron development,” Annual Review of Neuroscience, vol. 22, pp. 541–566, 1999.
[6]
M. S. Rao and S. C. Landis, “Cell interactions that determine sympathetic neuron transmitter phenotype and the neurokines that mediate them,” Journal of Neurobiology, vol. 24, no. 2, pp. 215–232, 1993.
[7]
M. Stanke, C. V. Duong, M. Pape et al., “Target-dependent specification of the neurotransmitter phenotype: cholinergic differentiation of sympathetic neurons is mediated in vivo by gp130 signaling,” Development, vol. 133, no. 1, pp. 141–150, 2006.
[8]
G. Apostolova, B. Loy, R. Dorn, and G. Dechant, “The sympathetic neurotransmitter switch depends on the nuclear matrix protein Satb2,” Journal of Neuroscience, vol. 30, no. 48, pp. 16356–16364, 2010.
[9]
B. Loy, G. Apostolova, R. Dorn, V. A. McGuire, J. S. C. Arthur, and G. Dechant, “P38α and p38β mitogen-activated protein kinases determine cholinergic transdifferentiation of sympathetic neurons,” Journal of Neuroscience, vol. 31, no. 34, pp. 12059–12067, 2011.
[10]
G. Apostolova and G. Dechant, “Development of neurotransmitter phenotypes in sympathetic neurons,” Autonomic Neuroscience, vol. 151, no. 1, pp. 30–38, 2009.
[11]
C. Brodski, H. Schnürch, and G. Dechant, “Neurotrophin-3 promotes the cholinergic differentiation of sympathetic neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 17, pp. 9683–9688, 2000.
[12]
C. Brodski, A. Schaubmar, and G. Dechant, “Opposing functions of GDNF and NGF in the development of cholinergic and noradrenergic sympathetic neurons,” Molecular and Cellular Neuroscience, vol. 19, no. 4, pp. 528–538, 2002.
[13]
R. A. Irizarry, B. Hobbs, F. Collin et al., “Exploration, normalization, and summaries of high density oligonucleotide array probe level data,” Biostatistics, vol. 4, no. 2, pp. 249–264, 2003.
[14]
R. C. Gentleman, V. J. Carey, D. M. Bates et al., “Bioconductor: open software development for computational biology and bioinformatics,” Genome Biology, vol. 5, no. 10, article R80, 2004.
[15]
V. G. Tusher, R. Tibshirani, and G. Chu, “Significance analysis of microarrays applied to the ionizing radiation response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5116–5121, 2001.
[16]
D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009.
[17]
D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists,” Nucleic Acids Research, vol. 37, no. 1, pp. 1–13, 2009.
[18]
G. Apostolova, R. Dorn, S. Ka et al., “Neurotransmitter phenotype-specific expression changes in developing sympathetic neurons,” Molecular and Cellular Neuroscience, vol. 35, no. 3, pp. 397–408, 2007.
[19]
K. Burau, I. Stenull, K. Huber et al., “c-Ret regulates cholinergic properties in mouse sympathetic neurons: from mutant mice,” European Journal of Neuroscience, vol. 20, no. 2, pp. 353–362, 2004.
[20]
U. Ernsberger, “The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons,” Cell and Tissue Research, vol. 333, no. 3, pp. 353–371, 2008.
[21]
U. Ernsberger, H. Patzke, and H. Rohrer, “The developmental expression of choline acetyltransferase (ChAT) and the neuropeptide VIP in chick sympathetic neurons: evidence for different regulatory events in cholinergic differentiation,” Mechanisms of Development, vol. 68, no. 1-2, pp. 115–126, 1997.
[22]
M. Geissen, S. Heller, D. Pennica, U. Ernsberger, and H. Rohrer, “The specification of sympathetic neurotransmitter phenotype depends on gp130 cytokine receptor signaling,” Development, vol. 125, no. 23, pp. 4791–4802, 1998.
[23]
B. Schütz, E. Weihe, and L. E. Eiden, “Independent patterns of transcription for the products of the rat cholinergic gene locus,” Neuroscience, vol. 104, no. 3, pp. 633–642, 2001.