We report here a dataset comprising nine nuclear markers for the Brazilian population of Cheloniidae turtles: hawksbills (Eretmochelys imbricata), loggerheads (Caretta caretta), olive ridleys (Lepidochelys olivacea), and green turtles (Chelonia mydas). Because hybridization is a common phenomenon between the four Cheloniidae species nesting on the Brazilian coast, we also report molecular markers for the hybrids E. imbricata × C. caretta, C. caretta × L. olivacea, and E. imbricata × L. olivacea and for one hybrid E. imbricata × C. mydas and one between three species C. mydas × E. imbricata × C. caretta. The data was used in previous studies concerning (1) the description of frequent hybrids C. caretta × E. imbricata in Brazil, (2) the report of introgression in some of these hybrids, and (3) population genetics. As a next step for the study of these hybrids and their evolution, genome-wide studies will be performed in the Brazilian population of E. imbricata, C. caretta, and their hybrids. 1. Introduction From the seven known sea turtle species, five species nest on the Brazilian coast: leatherback (Dermochelys coriacea), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), loggerhead (Caretta caretta), and hawksbill (Eretmochelys imbricata). The Brazilian sea turtle population differs from other worldwide populations because of its high hybrid frequency. Almost 43% of nesting E. imbricata individuals were reported as hybrids in a short stretch of the Brazilian coast (Bahia state), while other sites where E. imbricata nests did not show presence of hybrids [1, 2]. The sea turtles that nest in the Brazilian coast have been shown to form a separate genetic pool from other populations [3–5]. Studies with species nesting in Brazil show that their populations are differentiated from other worldwide populations. Recent telemetry studies corroborate the results from genetic data: C. caretta, E. imbricata, C. mydas, and L. olivacea individuals that nest in Brazilian beaches tend to stay in feeding aggregations within the Brazilian continental shelf [6–9]. On the other hand, Brazilian feeding aggregations are characterized by a mixture of turtles coming from different regions worldwide. Mixed-stock results based on mitochondrial DNA showed that E. imbricata feeding areas receive migrants from Africa, Caribbean, and Pacific Ocean [10]; C. caretta foraging aggregations are characterized by a mixture of Brazilian, Australian, Mediterranean, and northwestern Atlantic turtles [3]; and C. mydas feeding grounds are characterized by the contribution of other
References
[1]
P. Lara-Ruiz, G. G. Lopez, F. R. Santos, and L. S. Soares, “Extensive hybridization in hawksbill turtles (Eretmochelys imbricata) nesting in Brazil revealed by mtDNA analyses,” Conservation Genetics, vol. 7, no. 5, pp. 773–781, 2006.
[2]
S. T. Vila?a, S. M. Vargas, P. Lara-Ruiz, é. Molfetti, E. C. Reis, et al., “Nuclear markers reveal a complex introgression pattern among marine turtle species on the Brazilian coast,” Molecular Ecology, vol. 21, no. 17, pp. 4300–4312, 2012.
[3]
E. C. Reis, L. S. Soares, S. M. Vargas et al., “Genetic composition, population structure and phylogeography of the loggerhead sea turtle: colonization hypothesis for the Brazilian rookeries,” Conservation Genetics, vol. 11, no. 4, pp. 1467–1477, 2010.
[4]
E. Naro-Maciel, A. C. V. Bondioli, M. Martin, et al., “The interplay of homing and dispersal in green turtles: a focus on the southwestern atlantic,” Journal of Heredity, vol. 103, no. 6, pp. 792–805, 2012.
[5]
S. M. Vargas, F. C. F. Araújo, D. S. Monteiro et al., “Genetic diversity and origin of leatherback turtles (Dermochelys coriacea) from the Brazilian coast,” Journal of Heredity, vol. 99, no. 2, pp. 215–220, 2008.
[6]
M. ?. Marcovaldi, G. G. Lopez, L. S. Soares, E. H. S. M. Lima, J. C. A. Thomé, and A. P. Almeida, “Satellite-tracking of female loggerhead turtles highlights fidelity behavior in northeastern Brazil,” Endangered Species Research, vol. 12, no. 3, pp. 263–272, 2010.
[7]
M. A. Marcovaldi, G. G. Lopez, L. S. Soares, and M. Lopez-Mendilaharsu, “Satellite tracking of hawksbill turtles Eretmochelys imbricata nesting in northern Bahia, Brazil: turtle movements and foraging destinations,” Endangered Species Research, vol. 17, no. 2, pp. 123–132, 2012.
[8]
A. C. C. D. Da Silva, E. A. P. Dos Santos, F. L. Das C. Oliveira et al., “Satellite-tracking reveals multiple foraging strategies and threats for olive ridley turtles in Brazil,” Marine Ecology Progress Series, vol. 443, pp. 237–247, 2011.
[9]
B. J. Godley, E. H. S. M. Lima, S. ?kesson et al., “Movement patterns of green turtles in Brazilian coastal waters described by satellite tracking and flipper tagging,” Marine Ecology Progress Series, vol. 253, pp. 279–288, 2003.
[10]
S. T. Vila?aa, P. Lara-Ruiza, M. A. Marcovaldib, L. S. Soaresb, and F. R. Santos, “Population origin and historical demography in hawksbill (Eretmochelys imbricata) feeding and nesting aggregates from Brazil.,” Journal of Experimental Marine Biology and Ecology, vol. 446, pp. 334–344, 2013.
[11]
B. Ewing, L. Hillier, M. C. Wendl, and P. Green, “Base-calling of automated sequencer traces using phred. I. Accuracy assessment,” Genome Research, vol. 8, no. 3, pp. 175–185, 1998.
[12]
B. Ewing and P. Green, “Base-calling of automated sequencer traces using phred. II. Error probabilities,” Genome Research, vol. 8, no. 3, pp. 186–194, 1998.
[13]
D. Gordon, C. Abajian, and P. Green, “Consed: a graphical tool for sequence finishing,” Genome Research, vol. 8, no. 3, pp. 195–202, 1998.
[14]
S. Kumar, M. Nei, J. Dudley, and K. Tamura, “MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences,” Briefings in Bioinformatics, vol. 9, no. 4, pp. 299–306, 2008.
[15]
E. Naro-Maciel, M. Le, N. N. FitzSimmons, and G. Amato, “Evolutionary relationships of marine turtles: a molecular phylogeny based on nuclear and mitochondrial genes,” Molecular Phylogenetics and Evolution, vol. 49, no. 2, pp. 659–662, 2008.
[16]
D. A. Nickerson, V. O. Tobe, and S. L. Taylor, “PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing,” Nucleic Acids Research, vol. 25, no. 14, pp. 2745–2751, 1997.
[17]
M. Stephens, J. S. Sloan, P. D. Robertson, P. Scheet, and D. A. Nickerson, “Automating sequence-based detection and genotyping of SNPs from diploid samples,” Nature Genetics, vol. 38, no. 3, pp. 375–381, 2006.
[18]
R. K. Aggarwal, T. P. Velavan, D. Udaykumar et al., “Development and characterization of novel microsatellite markers from the olive ridley sea turtle (Lepidochelys olivacea),” Molecular Ecology Notes, vol. 4, no. 1, pp. 77–79, 2004.
[19]
B. M. Shamblin, B. C. Faircloth, M. Dodd et al., “Tetranucleotide microsatellites from the loggerhead sea turtle (Caretta caretta),” Molecular Ecology Notes, vol. 7, no. 5, pp. 784–787, 2007.
[20]
J. R. Wood, F. E. Wood, and K. Critchley, “Hybridization of Chelonia mydas and Eretmochelys imbricata,” Copeia, vol. 3, pp. 839–842, 1983.
[21]
S. A. Karl, B. W. Bowen, and J. C. Avise, “Hybridization among the ancient mariners: characterization of marine turtle hybrids with molecular genetic assays,” Journal of Heredity, vol. 86, no. 4, pp. 262–268, 1995.
[22]
J. A. Seminoff, S. A. Karl, T. Schwartz, and A. Resendiz, “Hybridization of the green turtle (Chelonia mydas) and hawksbill turtle (Eretmochelys imbricata) in the Pacific Ocean: indication of an absence of gender bias in the directionality of crosses,” Bulletin of Marine Science, vol. 73, no. 3, pp. 643–652, 2003.
[23]
K. Hirate and N. Kamezaki, “On the hybridization between the green turtle and the hawksbill turtle,” Umigame Newsletter, vol. 20, p. 20, 1994.
[24]
N. Kamezaki, Y. Nakajima, and M. Ishii, “Rapid communication: hybrids between Caretta caretta × Chelonia mydas from the Horinouchi Beach, Miyazaki,” Umigame Newsletter, vol. 30, pp. 7–9, 1996.
[25]
M. C. James, K. Martin, and P. H. Dutton, “Hybridization between a green turtle, Chelonia mydas, and loggerhead turtle, Caretta caretta, and the first record of a green turtle in Atlantic Canada,” Canadian Field-Naturalist, vol. 118, no. 4, pp. 579–582, 2004.
[26]
N. Kamezaki, “The possibility of hybridization between the loggerhead turtle, Caretta caretta, and the hawksbill turtle, Eretmochelys imbricata, in specimens hatched from eggs collected in Chita Peninsula,” Japanese Journal of Herpetology, vol. 10, pp. 52–53, 1983.
[27]
J. Frazier, “Sea turtles in the land of the dragon,” Sanctuary Asia, vol. 8, pp. 15–23, 1988.
[28]
M. B. Conceicao, J. A. Levy, L. F. Marins, and M. A. Marcovaldi, “Electrophoretic characterization of a hybrid between Eretmochelys imbricata and Caretta caretta (Cheloniidae),” Comparative Biochemistry and Physiology B, vol. 97, no. 2, pp. 275–278, 1990.
[29]
A. L. Bass, D. A. Good, K. A. Bjorndal et al., “Testing models of female reproductive migratory behaviour and population structure in the Caribbean hawksbill turtle, Eretmochelys imbricata, with mtDNA sequences,” Molecular Ecology, vol. 5, no. 3, pp. 321–328, 1996.
[30]
R. J. Greenblatt, T. M. Work, P. Dutton et al., “Geographic variation in marine turtle fibropapillomatosis,” Journal of Zoo and Wildlife Medicine, vol. 36, no. 3, pp. 527–530, 2005.
[31]
N. Kamezaki and T. Namikawa, “Electrophoretic evidence for a case of natural hybridization between the loggerhead turtles, Caretta caretta, and the hawksbill turtle, Eretmochelys imbricata,” Japanese Journal of Herpetology, vol. 10, no. 4, p. 108, 1984.
[32]
R. C. Barber, C. T. Fontaine, J. P. Flanagan, and E. E. Louis Jr., “Natural hybridization between a Kemp's ridley (Lepidochelys kempii) and loggerhead sea turtle (Caretta caretta) confirmed by molecular analysis,” Chelonian Conservation and Biology, vol. 4, no. 3, pp. 701–704, 2003.