Chronic myeloid leukemia (CML) is a myeloproliferative disease derived from an abnormal hematopoietic stem cell (HSC) and is consistently associated with the formation of Philadelphia (Ph) chromosome. Tyrosine kinase inhibitors (TKIs) are highly effective in treating chronic phase CML but do not eliminate leukemia stem cells (LSCs), which are believed to be related to disease relapse. Therefore, one major challenge in the current CML research is to understand the biology of LSCs and to identify the molecular difference between LSCs and its normal stem cell counterparts. Comparing the gene expression profiles between LSCs and normal HSCs by DNA microarray assay is a systematic and unbiased approach to address this issue. In this paper, we present a DNA microarray dataset for CML LSCs and normal HSCs to show that the microarray assay will benefit the current and future studies of the biology of CML stem cells. 1. Introduction Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder that originates from an abnormal hematopoietic stem cell (HSC) harboring the Philadelphia chromosome (Ph) [1–3]. The Ph is caused by a reciprocal translocation between chromosomes 9 and 22 (t(9; 22)(q34; q11)), resulting in the formation of the chimeric BCR-ABL protein [1, 4]. As a result, the BCR-ABL oncogene is formed. BCR-ABL is a constitutively active tyrosine kinase, which has provided the molecular basis for designing therapeutic drugs. Imatinib is the first tyrosine kinase inhibitor (TKI) found to be highly effective in CML treatment through inhibiting BCR-ABL kinase activity [5–7]. Targeted therapy with TKIs induces a complete hematologic and cytogenetic response in more than 90% of chronic phase CML patients [8]. However, TKIs cannot efficiently eradicate leukemia stem cells (LSCs) of CML due to the insensitivity of LSCs to TKIs [9, 10]. Therefore, developing new strategies to target LSC is necessary and critical for curing CML, and the success of this approach requires a full understanding of the biology of LSCs. Although increasing evidence demonstrated that CML stem cells utilize signaling pathways that are independent of BCR-ABL kinase activity for their maintenance and survival [11, 12], the underlying molecular mechanisms remain unclear. To address these challenging issues, we performed a DNA microarray assay to compare the gene expression profiles between LSCs and normal HSCs. Here, we present the entire microarray dataset in open access format to demonstrate the usefulness of the microarray data in studying LSCs in CML. 2. Methodology Our previous
References
[1]
S. Wong and O. N. Witte, “The BCR-ABL story: bench to bedside and back,” Annual Review of Immunology, vol. 22, pp. 247–306, 2004.
[2]
J. V. Melo and D. J. Barnes, “Chronic myeloid leukaemia as a model of disease evolution in human cancer,” Nature Reviews Cancer, vol. 7, no. 6, pp. 441–453, 2007.
[3]
M. Savona and M. Talpaz, “Getting to the stem of chronic myeloid leukaemia,” Nature Reviews Cancer, vol. 8, no. 5, pp. 341–350, 2008.
[4]
R. Ren, “Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia,” Nature Reviews Cancer, vol. 5, no. 3, pp. 172–183, 2005.
[5]
B. J. Druker, C. L. Sawyers, H. Kantarjian, et al., “Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome,” New England Journal of Medicine, vol. 344, pp. 1038–1042, 2001.
[6]
B. J. Druker, M. Talpaz, D. J. Resta et al., “Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia,” New England Journal of Medicine, vol. 344, no. 14, pp. 1031–1037, 2001.
[7]
B. J. Druker, S. Tamura, E. Buchdunger et al., “Effects of a selective inhibitor of the Ab1 tyrosine kinase on the growth of Bcr-Ab1 positive cells,” Nature Medicine, vol. 2, no. 5, pp. 561–566, 1996.
[8]
B. J. Druker, F. Guilhot, S. G. O'Brien et al., “Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia,” New England Journal of Medicine, vol. 355, no. 23, pp. 2408–2417, 2006.
[9]
S. M. Graham, H. G. J?rgensen, E. Allan et al., “Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro,” Blood, vol. 99, no. 1, pp. 319–325, 2002.
[10]
Y. Hu, S. Swerdlow, T. M. Duffy, R. Weinmann, F. Y. Lee, and S. Li, “Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 45, pp. 16870–16875, 2006.
[11]
A. S. Corbin, A. Agarwal, M. Loriaux, J. Cortes, M. W. Deininger, and B. J. Druker, “Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity,” Journal of Clinical Investigation, vol. 121, no. 1, pp. 396–409, 2011.
[12]
H. Zhang, C. Peng, Y. Hu, et al., “The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells,” Nature Genetics, vol. 44, pp. 861–871, 2012.
[13]
Y. Hu, Y. Liu, S. Pelletier et al., “Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia,” Nature Genetics, vol. 36, no. 5, pp. 453–461, 2004.
[14]
C. Peng, J. Brain, Y. Hu et al., “Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells,” Blood, vol. 110, no. 2, pp. 678–685, 2007.
[15]
S. Li, R. L. Ilaria Jr., R. P. Million, G. Q. Daley, and R. A. Van Etten, “The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity,” Journal of Experimental Medicine, vol. 189, no. 9, pp. 1399–1412, 1999.
[16]
S. Li and D. Li, DNA Microarray Technology and Data Analysis in Cancer Research, World Scientific, 2009.
[17]
Y. Chen, Y. Hu, H. Zhang, C. Peng, and S. Li, “Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia,” Nature Genetics, vol. 41, no. 7, pp. 783–792, 2009.
[18]
H. Zhang, H. Li, N. Ho, D. Li, and S. Li, “Scd1 plays a tumor-suppressive role in survival of leukemia stem cells and the development of chronic myeloid leukemia,” Molecular and Cellular Biology, vol. 32, pp. 1776–1787, 2012.