全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Catalytic Systems for Hydrogen Production via the Water-Gas Shift Reaction

DOI: 10.1155/2013/426980

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present work reports on the development of new catalysts for the production of hydrogen via the water-gas shift (WGS) reaction. In particular, the effect of Ce/La atom ratio on the catalytic performance of 0.5?wt% Pt supported on ( ) mixed metal oxides for the WGS reaction was investigated. It was found that the addition of 20?at.% La3+ in CeO2 lattice increased significantly the catalytic activity and stability of 0.5?wt% solid. More precisely, a lower amount of “carbon” was accumulated on the catalyst surface, whereas surface acidity and basicity studies showed that had the highest concentration of labile oxygen and acid sites, and the lowest concentration of basic sites compared to the other mixed metal oxide supports ( ). 1. Introduction The heterogeneously catalyzed water-gas shift reaction is an important part of the reaction network for hydrogen production through steam reforming of hydrocarbons, sugars, alcohols, and biooil [1–5]. The reaction is reversible, moderately exothermic, and equilibrium limited: The WGS reaction can be used to produce H2 and reduce the level of CO in a hydrogen product stream to less than 10?ppm for fuel cell applications, since CO is deleterious for the fuel cell’s electrodes [6]. In the last two decades, the interest of the scientific community for low-temperature WGS (LT-WGS) reaction has grown significantly as a result of the advancements made in fuel cell technologies for electricity production [7]. The conventional WGS catalysts which are used in the industry for more than 70 years are Fe3O4/Cr2O3 for operation at the high-temperature range of 350–450°C, and Cu/ZnO/Al2O3 at the low-temperature range of 180–250°C. These industrial catalysts require long-time period for activation and are pyrophoric, features that make them inappropriate for fuel cells applications [8]. Thus, it is necessary to develop new catalysts, highly preferable to improve the existing WGS catalytic technology, especially at temperatures lower than 250°C. Typical characteristics of novel WGS catalysts should include high stability and activity, no need for activation prior to use, and no pyrophoricity. In recent years, supported Pt catalysts (0.1–0.5?wt% Pt) using CeO2 and CeO2-based supports have been widely studied [9–16]. Jeong et al. [12] have found that Pt/Ce0.8Zr0.2O2 exhibits higher CO conversions than Pt/Ce0.2Zr0.8O2 due to the higher Pt dispersion achieved, easier reducibility of support, lower activation energy, and higher oxygen storage capacity (OSC), properties which were induced by the cubic structure and composition of

References

[1]  D. S. Newsome, “The water-gas shift reaction,” Catalysis Reviews-Science and Engineering, vol. 21, no. 2, pp. 275–318, 1980.
[2]  Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, “Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts,” Science, vol. 301, no. 5635, pp. 935–938, 2003.
[3]  R. D. Cortright, R. R. Davda, and J. A. Dumesic, “Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water,” Nature, vol. 418, no. 6901, pp. 964–967, 2002.
[4]  S. Czernik, R. French, C. Feik, and E. Chornet, “Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes,” Industrial and Engineering Chemistry Research, vol. 41, no. 17, pp. 4209–4215, 2002.
[5]  A. C. Basagiannis and X. E. Verykios, “Reforming reactions of acetic acid on nickel catalysts over a wide temperature range,” Applied Catalysis A, vol. 308, pp. 182–193, 2006.
[6]  A. Qi, B. Peppley, and K. Karan, “Integrated fuel processors for fuel cell application: a review,” Fuel Processing Technology, vol. 88, no. 1, pp. 3–22, 2007.
[7]  K. Polychronopoulou, C. M. Kalamaras, and A. M. Efstathiou, “Ceria-based materials for hydrogen production via hydrocarbon steam reforming and water-gas shift reactions,” Recent Patents on Materials Science, vol. 4, no. 2, pp. 122–145, 2011.
[8]  A. M. D. de Farias, A. P. M. G. Barandas, R. F. Perez, and M. A. Fraga, “Water-gas shift reaction over magnesia-modified Pt/CeO2 catalysts,” Journal of Power Sources, vol. 165, no. 2, pp. 854–860, 2007.
[9]  P. Panagiotopoulou and D. I. Kondarides, “Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water-gas shift reaction,” Catalysis Today, vol. 112, no. 1–4, pp. 49–52, 2006.
[10]  P. Panagiotopoulou, J. Papavasiliou, G. Avgouropoulos, T. Ioannides, and D. I. Kondarides, “Water-gas shift activity of doped Pt/CeO2 catalysts,” Chemical Engineering Journal, vol. 134, no. 1–3, pp. 16–22, 2007.
[11]  A. M. D. de Farias, D. Nguyen-Thanh, and M. A. Fraga, “Discussing the use of modified ceria as support for Pt catalysts on water-gas shift reaction,” Applied Catalysis B, vol. 93, no. 3-4, pp. 250–258, 2010.
[12]  D. W. Jeong, H. S. Potdar, and H. S. Roh, “Comparative study on nano-sized 1?wt% Pt/Ce0.8Zr0.2O2 and 1?wt% Pt/Ce0.2Zr0.8O2 catalysts for a single stage water-gas shift reaction,” Catalysis Letters, vol. 142, no. 4, pp. 439–444, 2012.
[13]  Y. T. Kim, S. J. You, and E. D. Park, “Water-gas shift reaction over Pt and Pt-CeOx supported on CexZr1-xO2,” International Journal of Hydrogen Energy, vol. 37, no. 2, pp. 1465–1474, 2012.
[14]  L. Z. Linganiso, V. R. R. Pendyala, G. Jacobs et al., “Low-temperature water-gas shift: doping ceria improves reducibility and mobility of O-bound species and catalysts activity,” Catalysis Letters, vol. 141, no. 12, pp. 1723–1731, 2011.
[15]  L. Z. Linganiso, G. Jacobs, K. G. Azzam et al., “Low-temperarure water-gas shift: strategy to lower Pt loading by doping ceria with Ca2+ improves formate mobility/WGS rate by increasing surface O-mobility,” Applied Catalysis A, vol. 394, no. 1-2, pp. 105–116, 2001.
[16]  C. M. Kalamaras, I. D. Gonzalez, R. M. Navarro, J. L. G. Fierro, and A. M. Efstathiou, “Effects of reaction temperature and support composition on the mechanism of water-gas shift reaction over supported-Pt catalysts,” Journal of Physical Chemistry C, vol. 115, no. 23, pp. 11595–11610, 2011.
[17]  J. M. Zalc, V. Sokolovskii, and D. G. L?ffler, “Are noble metal-based water-gas shift catalysts practical for automotive fuel processing?” Journal of Catalysis, vol. 206, no. 1, pp. 169–171, 2002.
[18]  X. Liu, W. Ruettinger, X. Xu, and R. Farrauto, “Deactivation of Pt/CeO2 water-gas shift catalysts due to shutdown/startup modes for fuel cell applications,” Applied Catalysis B, vol. 56, no. 1-2, pp. 69–75, 2005.
[19]  T. Bunluesin, R. J. Gorte, and G. W. Graham, “Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties,” Applied Catalysis B, vol. 15, no. 1-2, pp. 107–114, 1998.
[20]  X. Wang, R. J. Gorte, and J. P. Wagner, “Deactivation mechanisms for Pd/ceria during the water-gas-shift reaction,” Journal of Catalysis, vol. 212, no. 2, pp. 225–230, 2002.
[21]  C. Ratnasamy and J. P. Wagner, “Water gas shift catalysis,” Catalysis Reviews, vol. 51, no. 3, pp. 325–440, 2009.
[22]  G. Jacobs and B. H. Davis, Low Temperature Water-Gas Shift Catalysts, chapter 20, RSC Publishing, Cambridge, UK, 2007.
[23]  C. M. Kalamaras, P. Panagiotopoulou, D. I. Kondarides, and A. M. Efstathiou, “Kinetic and mechanistic studies of the water-gas shift reaction on Pt/TiO2 catalyst,” Journal of Catalysis, vol. 264, no. 2, pp. 117–129, 2009.
[24]  D. Dionysiou, X. Qi, Y. S. Lin, G. Meng, and D. Peng, “Preparation and characterization of proton conducting terbium doped strontium cerate membranes,” Journal of Membrane Science, vol. 154, no. 2, pp. 143–153, 1999.
[25]  D. Brandon and W. D. Kaplan, Microstructural Characterization of Materials, John Wiley & Sons, London, UK, 1999.
[26]  C. N. Costa, T. Anastasiadou, and A. M. Efstathiou, “The selective catalytic reduction of nitric oxide with methane over La2O3-CaO systems: synergistic effects and surface reactivity studies of NO, CH4, O2, and CO2 by transient techniques,” Journal of Catalysis, vol. 194, no. 2, pp. 250–265, 2000.
[27]  K. Polychronopoulou, C. N. Costa, and A. M. Efstathiou, “The steam reforming of phenol reaction over supported-Rh catalysts,” Applied Catalysis A, vol. 272, no. 1-2, pp. 37–52, 2004.
[28]  J. W. Niemantsverdriet, Spectroscopy in Catalysis: An Introduction, John Wiley & Sons, London, UK, 3rd edition, 2007.
[29]  M. Alifanti, B. Baps, N. Blangenois, J. Naud, P. Grange, and B. Delmon, “Characterization of CeO2-ZrO2 mixed oxides. Comparison of the citrate and sol-gel preparation methods,” Chemistry of Materials, vol. 15, no. 2, pp. 395–403, 2003.
[30]  S. Letichevsky, C. A. Tellez, R. R. de Avillez, M. I. P. da Silva, M. A. Fraga, and L. G. Appel, “Obtaining CeO2-ZrO2 mixed oxides by coprecipitation: role of preparation conditions,” Applied Catalysis B, vol. 58, no. 3-4, pp. 203–210, 2005.
[31]  S. Bernal, J. J. Calvino, G. A. Cifredo, J. M. Gatica, J. A. Pérez Omil, and J. M. Pintado, “Hydrogen chemisorption on ceria: influence of the oxide surface area and degree of reduction,” Journal of the Chemical Society, Faraday Transactions, vol. 89, no. 18, pp. 3499–3505, 1993.
[32]  V. R. Choudhary and V. H. Rane, “Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons,” Journal of Catalysis, vol. 130, no. 2, pp. 411–422, 1991.
[33]  B. Zhang, D. Li, and X. Wang, “Catalytic performance of La-Ce-O mixed oxide for combustion of methane,” Catalysis Today, vol. 158, no. 3-4, pp. 348–353, 2010.
[34]  G. C. Bond, G. Webb, S. Malinowski, and M. Marczewski, “Catalysis by solid acids and bases,” in Catalysis, G. C. Bond and G. Webb, Eds., vol. 8, chapter 4, pp. 107–156, RSC Publishing, Cambridge, UK, 1989.
[35]  P. A. Carlsson, L. ?sterlund, P. Thorm?hlen et al., “A transient in situ FTIR and XANES study of CO oxidation over Pt/Al2O3 catalysts,” Journal of Catalysis, vol. 226, no. 2, pp. 422–434, 2004.
[36]  C. Li, Y. Sakata, T. Arai, K. Domen, K. I. Maruya, and T. Onishi, “Adsorption of carbon monoxide and carbon dioxide on cerium oxide studied by Fourier-transform infrared spectroscopy—part 2: formation of formate species on partially reduced CeO2 at room temperature,” Journal of the Chemical Society, Faraday Transactions 1, vol. 85, no. 6, pp. 1451–1461, 1989.
[37]  L. Garcia, R. French, S. Czernik, and E. Chornet, “Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition,” Applied Catalysis A, vol. 201, no. 2, pp. 225–239, 2000.
[38]  T. Borowiecki, A. Mochocki, and J. Ryczkowski, “Induction period of coking in the steam reforming of hydrocarbons,” in Catalyst Deactivation, B. Delmon and G. F. Froment, Eds., p. 537, Elsevier Science B. V., Amsterdam, The Netherlands, 1994.
[39]  T. Borowiecki, “Nickel catalysts for steam reforming of hydrocarbons: phase composition and resistance to coking,” Applied Catalysis, vol. 10, no. 3, pp. 273–289, 1984.
[40]  C. M. Kalamaras, S. Americanou, and A. M. Efstathiou, “‘Redox’ versus “associative formate with -OH group regeneration” WGS reaction mechanism on Pt/CeO2: effect of platinum particle size,” Journal of Catalysis, vol. 279, no. 2, pp. 287–300, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133