全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Research on Hotspot Discovery in Internet Public Opinions Based on Improved -Means

DOI: 10.1155/2013/230946

Full-Text   Cite this paper   Add to My Lib

Abstract:

How to discover hotspot in the Internet public opinions effectively is a hot research field for the researchers related which plays a key role for governments and corporations to find useful information from mass data in the Internet. An improved -means algorithm for hotspot discovery in internet public opinions is presented based on the analysis of existing defects and calculation principle of original -means algorithm. First, some new methods are designed to preprocess website texts, select and express the characteristics of website texts, and define the similarity between two website texts, respectively. Second, clustering principle and the method of initial classification centers selection are analyzed and improved in order to overcome the limitations of original -means algorithm. Finally, the experimental results verify that the improved algorithm can improve the clustering stability and classification accuracy of hotspot discovery in internet public opinions when used in practice. 1. Introduction The rapid development of the Internet exerts a profound impact on the country, society, and individuals and how to effectively master mass data and extract the hotspot information therein have been a problem urgently to be solved in the management of internet public opinions. Solving this problem has an extensive application prospect: first, for individuals, it is an important means to promptly and conveniently obtain the hotspot information in current society; second, for enterprises, it can help enterprises master the most cutting-edge information and hot technology in their fields, increase their competitiveness for enterprises through this method; especially for the country, it can provide important clues for relevant departments of the governments to promptly know about the direction of public opinions in current society, be conductive to the governments to analyze and guide the public opinions, actively guide the healthy development of internet public opinions; meanwhile, help the governments to grasp the problems mostly cared by the people in each period as well as the viewpoints and attitudes on these problems, so as to make scientific and correct decision, keep the society stable, and truly reach the aim that the Internet serves for the society and the people. In the past, public opinions workers rely on manual work to sort the contents on the webpage to discover the hotspot information of the society, not only low efficiency in work, but also easy to be subjectively influenced and make the result deviate from the truth. At present, search

References

[1]  H. Liu and J. H. Xu, “Research of internet public opinion hotspot detection,” Bulletin of Science and Technology, vol. 27, no. 3, pp. 421–425, 2011.
[2]  G. Hamerly and C. Elkan, “A new algorithm based on K-means and its application in internet public opinion hotspot detection,” Pattern Recognition, vol. 32, no. 6, pp. 521–534, 2012.
[3]  L. M. Kristina, “Document clustering in reduced dimension vector space,” Journal of Computer Application, vol. 27, no. 10, pp. 37–49, 2011.
[4]  H. J. Andreas, “Research on text document clustering,” Computer Simulation, vol. 24, no. 7, pp. 84–99, 2010.
[5]  C. D. Wagstaff and S. S. Rogers, “Constrained K-means clustering with background knowledge,” Journal of Computer Engineering and Application, vol. 21, no. 5, pp. 467–479, 2011.
[6]  B. T. Ya, “Research on public opinion hotspot detection based on SVM,” Science and Technology Management Research, vol. 25, no. 2, pp. 64–69, 2009.
[7]  P. S. Bradley and L. S. Managasarian, “K-plane clustering,” Journal of Global Optimization, vol. 16, pp. 23–32, 2010.
[8]  Y. Tang and Q. S. Rong, “An implementation of clustering algorithm based on K-means,” Journal of Hubei Institute For Nationalities, vol. 22, no. 1, pp. 69–71, 2011.
[9]  Z. H. Yang and Y. T. Yang, “Document clustering method based on hybrid of SOM and K-means,” Computer Application, vol. 27, no. 5, pp. 73–75, 2012.
[10]  Y. F. Zhang and J. L. Mao, “An improved K-means algorithm,” Computer Application, vol. 23, no. 8, pp. 31–33, 2009.
[11]  N. Li and D. D. Wu, “Using text mining and sentiment analysis for online forums hotspot detection and forecast,” Decision Support Systems, vol. 48, no. 2, pp. 354–368, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133