Density functional theory has been used to calculate harmonic normal mode vibrational frequencies for unlabeled and isotope-labeled ubisemiquinones in both the gas phase and in several solvents. It is shown that four methoxy group conformations are likely to be present in solution at room temperature. Boltzmann weighted infrared and Raman spectra for the four conformers were calculated, and composite spectra that are the sum of the Boltzmann weighted spectra were produced. These composite spectra were compared to experimental FTIR and resonance Raman spectra, and it is shown that the calculated band frequencies, relative band intensities, and and isotope-induced band shifts are in excellent agreement with experiment. The calculations show that the C=O and C=C modes of ubisemiquinone strongly mix with methoxy methyl CH bending vibrations, and that the degree of mixing is altered upon isotope labeling, resulting in complicated changes in mode frequencies, intensities, and composition upon isotope labeling. Upon consideration of the calculated potential energy distributions of the normal modes of ubisemiquinone, and how they change upon isotope labeling, an explanation of some puzzling features in previously published Raman spectra is provided. 1. Introduction Ubiquinones ( : 2,3-dimethoxy-5-methyl-6-polyprenyl-1,4-benzoquinones) play an important role in biological electron and proton transfer processes that occur in both respiration and photosynthesis [1]. In photosynthetic reaction centers from purple bacteria, two UQ molecules, called and , act as terminal electron acceptors [2]. In purple bacterial reaction centers (PBRCs) (see Abbreviations) from Rhodobacter (Rb.) sphaeroides, and are both ubiquinone-10 (UQ10) molecules. and have very different functions; however, is an intermediary cofactor involved in transferring electrons from bacteriopheophytin to , while couples electron and proton transfer processes [3, 4]. The very different redox functions of and are testimony to the flexibility of UQs in biological processes. Since and are both UQ10 molecules, pigment-protein interactions must modulate the functional properties of UQ10 in PBRCs. Elucidation of these pigment-protein interactions is at the heart of much current research in photosynthesis [5, 6]. Fourier transform infrared (FTIR) difference spectroscopy (DS) is a sensitive molecular-level probe of pigment-protein interactions, and it is widely used to study both the neutral and reduced states of the quinones occupying the and binding sites in PBRCs [7]. Although and FTIR difference spectra
References
[1]
B. Trumpower, Function of Quinones in Energy Conserving Systems, Academic Press, 1982.
[2]
B. Ke, “The bacterial photosynthetic reaction center: chemical composition and crystal structure,” in Photosynthesis: Photobiochemistry and Photobiophysics, pp. 47–62, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
[3]
B. Ke, “The, “Stable” primary electron acceptor ( ) of photosynthetic bacteria,” in Photosynthesis: Photobiochemistry and Photobiophysics, pp. 101–110, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
[4]
B. Ke, “The secondary electron acceptor ( ) of photosynthetic bacteria,” in Photobiochemistry and Photobiophysics, pp. 111–128, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
[5]
N. Srinivasan and J. H. Golbeck, “Protein-cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in Photosystem I,” Biochimica et Biophysica Acta, vol. 1787, no. 9, pp. 1057–1088, 2009.
[6]
C. A. Wraight and M. R. Gunner, “The acceptor quinones of purple photosynthetic Bacteria-structure and spectroscopy,” in The Purple Photosynthetic Bacteria, C. N. Hunter, F. Daldal, M. C. Thurnauer, and J. T. Beatty, Eds., pp. 379–405, Springer, 2009.
[7]
J. Breton and E. Nabedryk, “Protein-quinone interactions in the bacterial photosynthetic reaction center: light-induced FTIR difference spectroscopy of the quinone vibrations,” Biochimica et Biophysica Acta, vol. 1275, no. 1-2, pp. 84–90, 1996.
[8]
M. Bauscher and W. M?ntele, “Electrochemical and infrared-spectroscopic characterization of redox reactions of p-quinones,” Journal of Physical Chemistry, vol. 96, no. 26, pp. 11101–11108, 1992.
[9]
M. Bauscher, E. Nabedryk, K. Bagley, J. Breton, and W. Mantele, “Investigation of models for photosynthetic electron acceptors. Infrared spectroelectrochemistry of ubiquinone and its anions,” FEBS Letters, vol. 261, no. 1, pp. 191–195, 1990.
[10]
X. Zhao, T. Ogura, M. Okamura, and T. Kitagawa, “Observation of the resonance raman spectra of the semiquinones QA·- and QB·- in photosynthetic reaction centers from Rhodobacter sphaeroides R26,” Journal of the American Chemical Society, vol. 119, pp. 5263–5264, 1997.
[11]
G. Balakrishnan, P. Mohandas, and S. Umapathy, “Ab initio studies on structure and vibrational spectra of ubiquinone and its radical anion,” Spectrochimica Acta A, vol. 53, no. 10, pp. 1553–1561, 1997.
[12]
M. Nonella, “A density functional investigation of model molecules for ubisemiquinone radical anions,” Journal of Physical Chemistry B, vol. 102, no. 21, pp. 4217–4225, 1998.
[13]
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., 2004.
[14]
K. M. Bandaranayake, V. Sivakumar, R. Wang, and G. Hastings, “Modeling the A1 binding site in photosystem. I. Density functional theory for the calculation of “anion—neutral“ FTIR difference spectra of phylloquinone,” Vibrational Spectroscopy, vol. 42, no. 1, pp. 78–87, 2006.
[15]
E. Cancès, C. Le Bris, B. Mennucci, and J. Tomasi, “Integral equation methods for molecular scale calculations in the liquid phase,” Mathematical Models and Methods in Applied Sciences, vol. 9, no. 1, pp. 35–44, 1999.
[16]
E. Cancès, B. Mennucci, and J. Tomasi, “A new integral equation formalism for the polarizable continuum model: theoretical background and applications to Isotropic and anisotropic dielectrics,” Journal of Chemical Physics, vol. 107, no. 8, pp. 3032–3041, 1997.
[17]
J. Tomasi, B. Mennucci, and E. Cancès, “The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level,” Journal of Molecular Structure, vol. 464, no. 1–3, pp. 211–226, 1999.
[18]
J. Tomasi, R. Cammi, B. Mennucci, C. Cappelli, and S. Corni, “Molecular properties in solution described with a continuum solvation model,” Physical Chemistry Chemical Physics, vol. 4, no. 23, pp. 5697–5712, 2002.
[19]
J. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum solvation models,” Chemical Reviews, vol. 105, no. 8, pp. 2999–3093, 2005.
[20]
J. M. L. Martin and C. Van Alsenoy, GAR2PED, University of Antwerp, 1995.
[21]
H. Lamichhane, R. Wang, and G. Hastings, “Comparison of calculated and experimental FTIR spectra of specifically labeled ubiquinones,” Vibrational Spectroscopy, vol. 55, no. 2, pp. 279–286, 2011.
[22]
C. Cappelli, C. O. Silva, and J. Tomasi, “Solvent effects on vibrational modes: ab-initio calculations, scaling and solvent functions with applications to the carbonyl stretch of dialkyl ketones,” Journal of Molecular Structure, vol. 544, pp. 191–203, 2001.
[23]
G. Hastings, K. M. P. Bandaranayake, and E. Carrion, “Time-resolved FTlR difference spectroscopy in combination with specific isotope labeling for the study of A1, the secondary electron acceptor in photosystem 1,” Biophysical Journal, vol. 94, no. 11, pp. 4383–4392, 2008.
[24]
J. Breton, J. R. Burie, C. Berthomieu, G. Berger, and E. Nabedry, “The binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: assignment of the vibrations in Rhodobacter sphaeroides using 18O- Or13C-labeled ubiquinone and vitamin K1,” Biochemistry, vol. 33, no. 16, pp. 4953–4965, 1994.
[25]
R. Brudler, H. J. M. De Groot, W. B. S. Van Liemt et al., “Asymmetric binding of the 1- and 4- groups of in Rhodobacter sphaeroides R26 reaction centres monitored by Fourier transform infra-red spectroscopy using site-specific isotopically labelled ubiquinone-10,” EMBO Journal, vol. 13, no. 23, pp. 5523–5530, 1994.
[26]
J. Breton, C. Boullais, G. Berger, C. Mioskowski, and E. Nabedryk, “Binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: symmetry of the carbonyl interactions and close equivalence of the QB vibrations in Rhodobacter sphaeroides and Rhodopseudomonas viridis probed by isotope labeling,” Biochemistry, vol. 34, no. 36, pp. 11606–11616, 1995.
[27]
R. Brudler, H. J. M. De Groot, W. B. S. Van Liemt et al., “FTIR spectroscopy shows weak symmetric hydrogen bonding of the carbonyl groups in Rhodobacter sphaeroides R26 reaction centres,” FEBS Letters, vol. 370, no. 1-2, pp. 88–92, 1995.