全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Graph-Theoretic Models of Mutations in the Nucleotide Binding Domain 1 of the Cystic Fibrosis Transmembrane Conductance Regulator

DOI: 10.1155/2013/938169

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cystic fibrosis is one of the most common inherited diseases and is caused by a mutation in a membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR). This protein serves as a chloride channel and regulates the viscosity of mucus lining the ducts of a number of organs. Although much has been learned about the consequences of mutations on the energy landscape and the resulting disrupted folding pathway of CFTR, a level of understanding needed to correct the misfolding has not been achieved. The most common mutations of CFTR are located in one of two nucleotide binding domains, namely, the nucleotide binding domain 1 (NBD1). We model NBD1 using a nested graph model. The vertices in the lowest layer each represent an atom in the structure of an amino acid residue, while the vertices in the mid layer each represent the residue. The vertices in the top layer each represent a subdomain of the nucleotide binding domain. We use this model to quantify the effects of a single point mutation on the protein domain. We compare the wildtype structure with eight of the most common mutations. The graph-theoretic model provides insight into how a single point mutation can have such profound structural consequences. 1. Introduction Cystic fibrosis is the most common genetic disorder in the Caucasian population. Cystic fibrosis (CF) is caused by a single point mutation in the cystic fibrosis membrane conductance regulator (CFTR) protein [1–4]. CFTR is a chloride channel located in the apical membrane of epithelial cells and plays a fundamental role in transepithelial salt and water movement [5]. A mutation of this protein affects a number of organs in the body such as lungs, pancreas, reproductive organs, and colon. The viscosity of the mucus that lines the ducts of these organs is altered by the increased salt levels resulting in sticky mucus plugs that disrupt the normal function of these organs. A mutation in the CFTR protein occurs in approximately one in every twenty individuals in the Caucasian population and there are more than one thousand nine hundred different reported mutations of CFTR resulting in different levels of severity of clinical consequences [6]. Although there are a large number of reported mutations of CFTR, the deletion of phenylalanine at position 508 (ΔF508) occurs in more than 90% of the CF population [7]. The ΔF508 mutation prevents the correct folding of the protein and consequential degradation [7, 8]. Thus, this mutation results in one of the more severe phenotypes. Once considered a fatal disease, knowledge about

References

[1]  K. Roberts, P. Cushing, P. Boisguerin, D. Madden, and B. Donald, “Computational Design of a PDZ domain peptide inhibitor that rescues CFTR activity,” PLOS Computational Biology, vol. 8, no. 4, Article ID e1002477, 2012.
[2]  A. Aleksandrov, P. Kota, L. Cui et al., “Allosteric modulation balances thermodynamic stability and restores function of ΔF508 CFTR,” Journal of Molecular Biology, vol. 419, pp. 41–60, 2012.
[3]  A. W. R. Serohijos, T. Hegedus, A. A. Aleksandrov et al., “Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3256–3261, 2008.
[4]  L. He, A. A. Aleksandrov, A. W. R. Serohijos et al., “Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating,” Journal of Biological Chemistry, vol. 283, no. 39, pp. 26383–26390, 2008.
[5]  T. C. Hwang and D. N. Sheppard, “Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation,” Journal of Physiology, vol. 587, no. 10, pp. 2151–2161, 2009.
[6]  The Cystic Fibrosis Mutation Database, http://www.genet.sickkids.on.ca/.
[7]  A. W. R. Serohijos, T. Hegedus, J. R. Riordan, and N. V. Dokholyan, “Diminished self-chaperoning activity of the ΔF508 mutant of CFTR results in protein misfolding,” PLoS Computational Biology, vol. 4, no. 2, Article ID e1000008, 2008.
[8]  A. A. Aleksandrov, P. Kota, L. A. Aleksandrov et al., “Regulatory insertion removal restores maturation, stability and function of ΔF508 CFTR,” Journal of Molecular Biology, vol. 401, no. 2, pp. 194–210, 2010.
[9]  D. B. Luckie, J. H. Wilterding, M. Krha, and M. E. Krouse, “CFTR and MDR: ABC transporters with homologous structure but divergent function,” Current Genomics, vol. 4, no. 3, pp. 109–121, 2003.
[10]  B. K. Berdiev, Y. J. Qadri, and D. J. Benos, “Assessment of the CFTR and ENaC association,” Molecular BioSystems, vol. 5, no. 2, pp. 123–227, 2009.
[11]  G. Seavilleklein, N. Amer, A. Evagelidis et al., “PKC phosphorylation modulates PKA-dependent binding of the R domain to other domains of CFTR,” American Journal of Physiology—Cell Physiology, vol. 295, no. 5, pp. C1366–C1375, 2008.
[12]  H. A. Lewis, X. Zhao, C. Wang et al., “Impact of the ΔF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure,” Journal of Biological Chemistry, vol. 280, no. 2, pp. 1346–1353, 2005.
[13]  S. Y. Huang, D. Bolser, H. Y. Liu, T. C. Hwang, and X. Zou, “Molecular modeling of the heterodimer of human CFTR's nucleotide-binding domains using a protein-protein docking approach,” Journal of Molecular Graphics and Modelling, vol. 27, no. 7, pp. 822–828, 2009.
[14]  T. Hegedus, A. W. R. Serohijos, N. V. Dokholyan, L. He, and J. R. Riordan, “Computational studies reveal phosphorylation-dependent changes in the unstructured R domain of CFTR,” Journal of Molecular Biology, vol. 378, no. 5, pp. 1052–1063, 2008.
[15]  X. Wang, J. Matteson, Y. An et al., “COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses di-acidic exit code,” Journal of Cell Biology, vol. 167, no. 1, pp. 65–74, 2004.
[16]  M. F. N. Rosser, D. E. Grove, and D. M. Cyr, “The use of small molecules to correct defects in CFTR folding, maturation, and channel activity,” Current Chemical Biology, vol. 3, no. 1, pp. 100–111, 2009.
[17]  N. Pedemonte, G. L. Lukacs, K. Du et al., “Small-molecule correctors of defective ΔF508-CFTR cellular processing identified by high-throughput screening,” Journal of Clinical Investigation, vol. 115, no. 9, pp. 2564–2571, 2005.
[18]  A. del Sol, H. Fujihashi, D. Amoros, and R. Nussinov, “Residues crucial for maintaining short paths in network communication mediate signaling in proteins,” Molecular Systems Biology, vol. 2, Article ID 2006.0019, 2006.
[19]  M. Habibi, C. Eslahchi, M. Sadeghi, and H. Pezashk, “The interpretation of protein structures based on graph theory and contact map,” Open Access Bioinformatics, vol. 2, pp. 127–137, 2010.
[20]  T. Haynes, D. Knisley, E. Seier, and Y. Zou, “A quantitative analysis of secondary RNA structure using domination based parameters on trees,” BMC Bioinformatics, vol. 7, article 108, 2006.
[21]  RAG: RNA-As-Graphs, http://www.biomath.nyu.edu/.
[22]  D. Knisley and J. Knisley, “Predicting protein-protein interactions using graph invariants and a neural network,” Computational Biology and Chemistry, vol. 35, no. 2, pp. 108–113, 2011.
[23]  D. West, Introduction to Graph Theory, Prentice Hall, New York, NY, USA, 1996.
[24]  J. Bondy and U. S. R. Murty, Graph Theory, Springer, New York, NY, USA, 2010.
[25]  M. Charton and B. I. Charton, “The structural dependence of amino acid hydrophobicity parameters,” Journal of Theoretical Biology, vol. 99, no. 4, pp. 629–644, 1982.
[26]  J. Kyte and R. F. Doolittle, “A simple method for displaying the hydropathic character of a protein,” Journal of Molecular Biology, vol. 157, no. 1, pp. 105–132, 1982.
[27]  H. A. Lewis, C. Wang, X. Zhao et al., “Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry,” Journal of Molecular Biology, vol. 396, no. 2, pp. 406–430, 2010.
[28]  The Protein Databank, http://www.pdb.org/.
[29]  I-TASSER, http://zhanglab.ccmb.med.umich.edu/I-TASSER/.
[30]  MATLAB, http://www.mathworks.com/products/matlab/index.html.
[31]  D. Bonchev and D. H. Rouvray, Chemical Graph Theory: Theory and Fundamentals, Gordon and Breach, New York, NY, USA, 1991.
[32]  N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, Fla, USA, 2nd edition, 1992.
[33]  H. Yu, B. Burton, C. Huang et al., “Ivacaftor potentiation of multiple CFTR channels with gating mutations,” Journal of Cystic Fibrosis, vol. 11, no. 3, pp. 237–245, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133