全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Application of Genetic Algorithm for Discovery of Core Effective Formulae in TCM Clinical Data

DOI: 10.1155/2013/971272

Full-Text   Cite this paper   Add to My Lib

Abstract:

Research on core and effective formulae (CEF) does not only summarize traditional Chinese medicine (TCM) treatment experience, it also helps to reveal the underlying knowledge in the formulation of a TCM prescription. In this paper, CEF discovery from tumor clinical data is discussed. The concepts of confidence, support, and effectiveness of the CEF are defined. Genetic algorithm (GA) is applied to find the CEF from a lung cancer dataset with 595 records from 161 patients. The results had 9 CEF with positive fitness values with 15 distinct herbs. The CEF have all had relative high average confidence and support. A herb-herb network was constructed and it shows that all the herbs in CEF are core herbs. The dataset was divided into CEF group and non-CEF group. The effective proportions of former group are significantly greater than those of latter group. A Synergy index (SI) was defined to evaluate the interaction between two herbs. There were 4 pairs of herbs with high SI values to indicate the synergy between the herbs. All the results agreed with the TCM theory, which demonstrates the feasibility of our approach. 1. Introduction Traditional Chinese medicine (TCM) has been developed and practiced in China for thousands of years, and herbal prescription has played a key role in the medical treatment. A Large number of herbal prescriptions have been recorded over the years where valuable TCM knowledge is hidden. It is urgent and critical to analyze these data so that TCM models can be developed in the modernization of this ancient knowledge. Although TCM is still in practice and more countries consider it as an alternative treatment method [1], the principle of formulating TCM prescription remains unknown. However, it is a daunting task to analyze such a large dataset manually. The methods of knowledge discovery in database (KDD) have been suggested as viable approaches. KDD allows TCM researchers to find interesting patterns efficiently, and they may direct further laboratory work that leads to discovery [2]. Many successful projects have been reported. For example, Wang et al. [3] illustrated the use of structure equation modeling (SEM) to explore the diagnosis of the suboptimal health status (SHS) and provided evidence for the standardization of TCM patterns. Multilabel learning model [4, 5] was introduced for TCM syndrome identification. Complex network was built for the clinical data mining in TCM [6–8]. Generally, KDD research in TCM has been divided into two main categories. The first one attempts to extend our understanding using existing TCM

References

[1]  P. M. Barnes, B. Bloom, and R. L. Nahin, “Complementary and alternative medicine use among adults and children: United States, 2007,” National Health Statistics Reports, no. 12, pp. 1–23, 2009.
[2]  H. Lan, Y. Lu, K. Jin, T. Zhu, and Z. Jin, “Data mining: a modern tool to investigate Traditional Chinese Medicine,” Journal of US-China Medical Science, vol. 8, no. 5, pp. 316–320, 2011.
[3]  L.-M. Wang, X. Zhao, X.-L. Wu, et al., “Diagnosis analysis of 4 TCM patterns in suboptimal health status: a structural equation modelling approach,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 970985, 6 pages, 2012.
[4]  G. P. Liu, J. J. Yan, Y. Q. Wang et al., “Application of multilabel learning using the relevant feature for each label in chronic gastritis syndrome diagnosis,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 135387, 9 pages, 2012.
[5]  G. Z. Li, S. X. Yan, M. You, S. Sun, and A. Ou, “Intelligent ZHENG classification of hypertension depending on ML-kNN and information fusion,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 837245, 5 pages, 2012.
[6]  J. Chen, P. Lu, X. Zuo, et al., “Clinical data mining of phenotypic network in angina pectoris of coronary heart disease,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 546230, 8 pages, 2012.
[7]  M. Yang, L. Jiao, P. Chen, J. Wang, and L. Xu, “Complex systems entropy network and its application in data mining for chinese medicine tumor clinics,” World Science and Technology, vol. 14, no. 2, pp. 1376–1384, 2012.
[8]  Q. Shi, H. Zhao, and J. Chen, “Study on TCM syndrome identification modes of coronary heart disease based on data mining,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 697028, 11 pages, 2012.
[9]  Y. Jiang, Z. Deng, R. Li, and G. Jin, “Basic formulae of Chinese materia medica and its meaning of clinics,” Study Journal of Traditional Chinese Medicine, vol. 19, no. 4, pp. 382–383, 2001.
[10]  Y. Song, F. Li, J. Ma, Q. Tian, J. Guan, and C. Wang, “Disciplines of medicinal formulas for insomnia by data mining,” in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW '10), pp. 635–639, December 2010.
[11]  Y.-H. Yang, P.-C. Chen, J.-D. Wang, C.-H. Lee, and J.-N. Lai, “Prescription pattern of traditional Chinese medicine for climacteric women in Taiwan,” Climacteric, vol. 12, no. 6, pp. 541–547, 2009.
[12]  Z. Zhou, “Efficiently mining positive correlation rules,” Applied Mathematics and Information Sciences, vol. 5, no. 2, pp. 39S–44S, 2011.
[13]  X. Li, M. Wang, X. Yu, et al., “Unsupervised data mining technology based on research of stroke medication rules and discovery of prescription,” African Journal of Pharmacy and Pharmacology, vol. 6, no. 29, pp. 2247–2254, 2012.
[14]  C. Y. Ung, H. Li, Z. W. Cao, Y. X. Li, and Y. Z. Chen, “Are herb-pairs of traditional Chinese medicine distinguishable from others? Pattern analysis and artificial intelligence classification study of traditionally defined herbal properties,” Journal of Ethnopharmacology, vol. 111, no. 2, pp. 371–377, 2007.
[15]  “Discovery of regularities in the use of herbs in Traditional Chinese Medicine prescriptions,” in Proceedings of the PAKDD Workshops, N. L. Zhang, R. Zhang, and T. Chen, Eds., 2011.
[16]  S. Li, “Network systems underlying traditional Chinese medicine syndrome and herb formula,” Current Bioinformatics, vol. 4, no. 3, pp. 188–196, 2009.
[17]  S. Li, B. Zhang, D. Jiang, Y. Wei, and N. Zhang, “Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae,” BMC Bioinformatics, vol. 11, no. 11, supplement, article S6, 2010.
[18]  M. Yang, Y. Tian, J. Chen, J. Mao, and Y. Song, “Application of Bron-Kerbosch algorithm for the discovery of basic formula in Chinese medicine prescription,” Zhongguo Zhong Yao Za Zhi, vol. 37, no. 21, pp. 3323–3328, 2012.
[19]  Y. Gao, Z. Liu, C.-J. Wang, and X. Jun-Yuan, “Chinese medicine formula network analysis for core herbal discovery,” in Brain Informatics, pp. 255–264, Springer, Berlin, Germany, 2012.
[20]  X. Zhou, R. Zhang, Y. Wang, P. Li, and B. Liu, “Network analysis for core herbal combination knowledge discovery from clinical Chinese medical formulae,” in Proceedings of the 1st International Workshop on Database Technology and Applications (DBTA '09), pp. 188–191, April 2009.
[21]  K.-F. Cheng, “Use of Chinese herbal medicine as an adjuvant for cancer treatment: a randomized controlled dose-finding clinical trial on lung cancer patients,” Journal of Cancer Therapy, vol. 2, no. 2, pp. 91–98, 2011.
[22]  V. B. Konkimalla and T. Efferth, “Evidence-based Chinese medicine for cancer therapy,” Journal of Ethnopharmacology, vol. 116, no. 2, pp. 207–210, 2008.
[23]  K. K. L. Chan, T. J. Yao, B. Jones et al., “The use of Chinese herbal medicine to improve quality of life in women undergoing chemotherapy for ovarian cancer: a double-blind placebo-controlled randomized trial with immunological monitoring,” Annals of Oncology, vol. 22, no. 10, pp. 2241–2249, 2011.
[24]  A. Molassiotis, B. Potrata, and K. K. F. Cheng, “A systematic review of the effectiveness of Chinese herbal medication in symptom management and improvement of quality of life in adult cancer patients,” Complementary Therapies in Medicine, vol. 17, no. 2, pp. 92–120, 2009.
[25]  J.-H. Tian, L.-S. Liu, Z.-M. Shi, Z.-Y. Zhou, and L. Wang, “A randomized controlled pilot trial of “feiji Recipe” on quality of life of non-small cell lung cancer patients,” American Journal of Chinese Medicine, vol. 38, no. 1, pp. 15–25, 2010.
[26]  Y. Wang, J. Shen, and Y. Xu, “Symptoms and quality of life of advanced cancer patients at home: a cross-sectional study in Shanghai, China,” Supportive Care in Cancer, vol. 19, no. 6, pp. 789–797, 2011.
[27]  M. Jalali-Heravi and A. Kyani, “Application of genetic algorithm-kernel partial least square as a novel nonlinear feature selection method: activity of carbonic anhydrase II inhibitors,” European Journal of Medicinal Chemistry, vol. 42, no. 5, pp. 649–659, 2007.
[28]  M. Yang, Y. Zhou, J. Chen, M. Yu, X. Shi, and X. Gu, “Application of genetic algorithm in blending technology for extractions of Cortex Fraxini,” Zhongguo Zhongyao Zazhi, vol. 34, no. 20, pp. 2594–2598, 2009.
[29]  J. Poon, S. Poon, R. Zhang, and D. Sze, “Co-evolution of symptom-herb relationship,” in Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1–6, 2012.
[30]  M. Yang, M.-Y. Yu, X.-F. Shi, and Y.-P. Teng, “Back-propagation neural network and genetic algorithm for multi-objective,” Zhongguo Zhongyao Zazhi, vol. 33, no. 22, pp. 2622–2626, 2008.
[31]  M. McCulloch, C. See, X.-J. Shu et al., “Astragalus-based Chinese herbs and platinum-based chemotherapy for advanced non-small-cell lung cancer: meta-analysis of randomized trials,” Journal of Clinical Oncology, vol. 24, no. 3, pp. 419–430, 2006.
[32]  L. Guo, S.-P. Bai, L. Zhao, and X.-H. Wang, “Astragalus polysaccharide injection integrated with vinorelbine and cisplatin for patients with advanced non-small cell lung cancer: effects on quality of life and survival,” Medical Oncology, vol. 29, no. 3, pp. 1656–1662, 2012.
[33]  Z. Sun, Y.-H. Su, and X.-Q. Yue, “Professor Ling Changquan's experience in treating primary liver cancer: an analysis of herbal medication,” Journal of Chinese Integrative Medicine, vol. 6, no. 12, pp. 1221–1225, 2008.
[34]  B.-H. Yoo, B.-H. Lee, J.-S. Kim, N.-J. Kim, S.-H. Kim, and K.-W. Ryu, “Effects of Shikunshito-Kamiho on fecal enzymes and formation of aberrant crypt foci induced by 1,2-dimethylhydrazine,” Biological and Pharmaceutical Bulletin, vol. 24, no. 6, pp. 638–642, 2001.
[35]  Y. Ye, G.-X. Chou, H. Wang, J.-H. Chu, W.-F. Fong, and Z.-L. Yu, “Effects of sesquiterpenes isolated from largehead atractylodes rhizome on growth, migration, and differentiation of B16 melanoma cells,” Integrative Cancer Therapies, vol. 10, no. 1, pp. 92–100, 2011.
[36]  J. Huo, F. Qin, and X. Cai, “Chinese medicine formula “Weikang Keli” induces autophagic cell death on human gastric cancer cell line SGC-7901,” Phytomedicine, vol. 20, no. 2, pp. 159–165, 2013.
[37]  T.-H. Kang, J.-Y. Bang, M.-H. Kim, I.-C. Kang, H.-M. Kim, and H.-J. Jeong, “Atractylenolide III, a sesquiterpenoid, induces apoptosis in human lung carcinoma A549 cells via mitochondria-mediated death pathway,” Food and Chemical Toxicology, vol. 49, no. 2, pp. 514–519, 2011.
[38]  H. Tsuneki, E.-L. Ma, S. Kobayashi et al., “Antiangiogenic activity of β-eudesmol in vitro and in vivo,” European Journal of Pharmacology, vol. 512, no. 2-3, pp. 105–115, 2005.
[39]  P. Plastina, D. Bonofiglio, D. Vizza et al., “Identification of bioactive constituents of Ziziphus jujube fruit extracts exerting antiproliferative and apoptotic effects in human breast cancer cells,” Journal of Ethnopharmacology, vol. 140, no. 2, pp. 325–332, 2012.
[40]  F. Liu, J. Liu, J. Ren, J. Li, and H. Li, “Effect of Salvia chinensis extraction on angiogenesis of tumor,” Zhongguo Zhong Yao Za Zhi, vol. 37, no. 9, pp. 1285–1288, 2012.
[41]  J.-H. Woo, D. Li, K. Wilsbach et al., “Coix seed extract, a commonly used treatment for cancer in China, inhibits NFκB and protein kinase C signaling,” Cancer Biology and Therapy, vol. 6, no. 12, pp. 2005–2011, 2007.
[42]  J. Y. Huang, S. G. Li, Y. X. Li, M. F. Zhao, H. Yao, and X. H. Lin, “Study on anticancer extractions and components from Selaginella Doederleinii Hieron,” Journal of Fujian Medical University, vol. 47, no. 1, pp. 1–5, 2013.
[43]  G. T. Wang, “Treatment of operated late gastric carcinoma with prescription of strengthening the patient's resistance and dispelling the invading evil in combination with chemotherapy: follow-up study of 158 patients and experimental study in animals,” Chinese Journal of Modern Developments in Traditional Medicine, vol. 10, no. 12, pp. 712–707, 1990.
[44]  G. Gu, I. Barone, L. Gelsomino, et al., “Oldenlandia diffusa extracts exert antiproliferative and apoptotic effects on human breast cancer cells through ERalpha/Sp1-mediated p53 activation,” Journal of Cellular Physiology, vol. 227, no. 10, pp. 3363–3372, 2012.
[45]  S. Gupta, D. Zhang, J. Yi, and J. Shao, “Anticancer activities of Oldenlandia diffusa,” Journal of Herbal Pharmacotherapy, vol. 4, no. 1, pp. 21–33, 2004.
[46]  Y. Komiyama, K. Mitsuyama, J. Masuda et al., “Prebiotic treatment in experimental colitis reduces the risk of colitic cancer,” Journal of Gastroenterology and Hepatology, vol. 26, no. 8, pp. 1298–1308, 2011.
[47]  O. Kanauchi, K. Mitsuyama, A. Andoh, and T. Iwanaga, “Modulation of intestinal environment by prebiotic germinated barley foodstuff prevents chemo-induced colonic carcinogenesis in rats,” Oncology Reports, vol. 20, no. 4, pp. 793–801, 2008.
[48]  J. R. Jeon and J. H. Choi, “Lactic acid fermentation of germinated barley fiber and proliferative function of colonic epithelial cells in loperamide-induced rats,” Journal of Medicinal Food, vol. 13, no. 4, pp. 950–960, 2010.
[49]  H. Hanai, O. Kanauchi, K. Mitsuyama et al., “Germinated barley foodstuff prolongs remission in patients with ulcerative colitis,” International Journal of Molecular Medicine, vol. 13, no. 5, pp. 643–647, 2004.
[50]  T. Akihisa, Y. Nakamura, H. Tokuda et al., “Triterpene acids from Poria cocos and their anti-tumor-promoting effects,” Journal of Natural Products, vol. 70, no. 6, pp. 948–953, 2007.
[51]  H. Ling, L. Zhou, X. Jia, L. A. Gapter, R. Agarwal, and K.-Y. Ng, “Polyporenic acid C induces caspase-8-mediated apoptosis in human lung cancer A549 cells,” Molecular Carcinogenesis, vol. 48, no. 6, pp. 498–507, 2009.
[52]  C. C. Conaway, D. Jiao, G. J. Kelloff, V. E. Steele, A. Rivenson, and F.-L. Chung, “Chemopreventive potential of fumaric acid, N-acetylcysteine, N-(4-hydroxyphenyl) retinamide and β-carotene for tobacco-nitrosamine-induced lung tumors in A/J mice,” Cancer Letters, vol. 124, no. 1, pp. 85–93, 1998.
[53]  M. Heng and Z. Lu, “Antiviral effect of mangiferin and isomangiferin on herpes simplex virus,” Chinese Medical Journal, vol. 103, no. 2, pp. 160–165, 1990.
[54]  P. He, S. Li, S.-J. Wang, Y.-C. Yang, and J.-G. Shi, “Study on chemical constituents in rhizome of Pinellia ternata,” Zhongguo Zhongyao Zazhi, vol. 30, no. 9, pp. 671–674, 2005.
[55]  J. Lin, J. Yao, X. Zhou, X. Sun, and K. Tang, “Expression and purification of a novel Mannose-Binding lectin from Pinellia ternata,” Applied Biochemistry and Biotechnology Part B, vol. 25, no. 3, pp. 215–221, 2003.
[56]  G.-H. Zhao, Z.-X. Li, and Z.-D. Chen, “Structural analysis and antitumor activity of RDPS-I polysaccharide from Chinese yam,” Acta Pharmaceutica Sinica, vol. 38, no. 1, pp. 37–41, 2003.
[57]  Y. M. Zhang, “Bo Liangsong's experience in treating large intestine cancer by supporting healthy Qi and eliminating pathogenic factors,” Shanghai Journal of Traditional Chinese Medicine, vol. 39, no. 9, article 28, 2005.
[58]  A. Murakami, Y. Nakamura, Y. Ohto et al., “Suppressive effects of citrus fruits on free radical generation and nobiletin, an anti-inflammatory polymethoxyflavonoid,” BioFactors, vol. 12, no. 1–4, pp. 187–192, 2000.
[59]  M.-J. Kim, J. P. Hae, S. H. Mee et al., “Citrus Reticulata blanco induces apoptosis in human gastric cancer cells SNU-668,” Nutrition and Cancer, vol. 51, no. 1, pp. 78–82, 2005.
[60]  X. Zheng, “Guideline on study for clinical trials of new Chinese traditional drug: Chinese medical science and technology,” 2002.
[61]  L. Nilsson, Robustness Analysis of FE-MODELS, Lund University, Lund, Sweden, 2006.
[62]  M. E. Smith and S. Bauer-Wu, “Traditional Chinese medicine for cancer-related symptoms,” Seminars in Oncology Nursing, vol. 28, no. 1, pp. 64–74, 2012.
[63]  A. Vincenti, M. R. Ahmadian, and P. Vannucci, “BIANCA: a genetic algorithm to solve hard combinatorial optimisation problems in engineering,” Journal of Global Optimization, vol. 48, no. 3, pp. 399–421, 2010.
[64]  R.-L. Wang, S. Fukuta, J.-H. Wang, and K. Okazaki, “A genetic algorithm with conditional crossover and mutation operators and its application to combinatorial optimization problems,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 90, no. 1, pp. 287–293, 2007.
[65]  S.-Y. Ho, J.-H. Chen, and M.-H. Huang, “Inheritable genetic algorithm for biobjective 0/1 combinatorial optimization problems and its applications,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 34, no. 1, pp. 609–620, 2004.
[66]  C. Aflori and M. Craus, “Grid implementation of the Apriori algorithm,” Advances in Engineering Software, vol. 38, no. 5, pp. 295–300, 2007.
[67]  L. Hanguang and N. Yu, “Intrusion detection technology research based on apriori algorithm,” Physics Procedia, vol. 24, pp. 1615–1620, 2012.
[68]  L. I. Xiang, “Simulation system of car crash test in C-NCAP analysis based on an improved apriori algorithm,” Physics Procedia, vol. 25, pp. 2066–2071, 2012.
[69]  H. Yu, J. Wen, H. Wang, and J. Li, “An improved Apriori algorithm based on the Boolean matrix and Hadoop,” in Proceedings of the International Conference on Advanced in Control Engineering and Information Science (CEIS '11), pp. 1827–1831, August 2011.
[70]  W. Xu, A. D. Towers, P. Li, and J.-P. Collet, “Traditional Chinese medicine in cancer care: perspectives and experiences of patients and professionals in China,” European Journal of Cancer Care, vol. 15, no. 4, pp. 397–403, 2006.
[71]  C. W. Cheng, A. O. L. Kwok, Z. X. Bian, and D. M. W. Tse, “The quintessence of Traditional Chinese Medicine: syndrome and its distribution among advanced cancer patients with Constipation,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 739642, 7 pages, 2012.
[72]  R. Wong, C. M. Sagar, and S. M. Sagar, “Integration of Chinese medicine into supportive cancer care: a modern role for an ancient tradition,” Cancer Treatment Reviews, vol. 27, no. 4, pp. 235–246, 2001.
[73]  H. Beinfield and E. Korngold, “Chinese medicine and cancer care,” Alternative Therapies in Health and Medicine, vol. 9, no. 5, pp. 38–52, 2003.
[74]  P.-H. Chiu, H.-Y. Hsieh, and S.-C. Wang, “Prescriptions of traditional Chinese medicine are specific to cancer types and adjustable to temperature changes,” PLoS ONE, vol. 7, no. 2, Article ID e31648, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133