Speckle suppression plays an important role in improving ultrasound (US) image quality. While lots of algorithms have been proposed for 2D US image denoising with remarkable filtering quality, there is relatively less work done on 3D ultrasound speckle suppression, where the whole volume data rather than just one frame needs to be considered. Then, the most crucial problem with 3D US denoising is that the computational complexity increases tremendously. The nonlocal means (NLM) provides an effective method for speckle suppression in US images. In this paper, a programmable graphic-processor-unit- (GPU-) based fast NLM filter is proposed for 3D ultrasound speckle reduction. A Gamma distribution noise model, which is able to reliably capture image statistics for Log-compressed ultrasound images, was used for the 3D block-wise NLM filter on basis of Bayesian framework. The most significant aspect of our method was the adopting of powerful data-parallel computing capability of GPU to improve the overall efficiency. Experimental results demonstrate that the proposed method can enormously accelerate the algorithm. 1. Introduction Ultrasonic imaging owns advantages such as noninvasive, radiation-free, low-cost, and fast imaging compared with other medical imaging techniques [1]. It has been widely used in many medical applications. Since 3D ultrasound imaging can provide clearer spatial relationship and more abundant diagnostic information compared with 2D ultrasound, it attracts much attention from the related fields. However, due to the coherence properties of ultrasound imaging, the image is often severely corrupted by speckle and other artifacts. Speckle could obscure the important image details and reduce the contrast of the soft tissues in the image, thereby causing great difficulties to the subsequent US image processing such as edge detection, image segmentation, and image registration. Therefore, an efficient 3D ultrasound image denoising algorithm is in urgent need in the field of 3D ultrasound. Many researchers engaged in image processing have proposed lots of denoising algorithms for 2D ultrasound images [1–3]. However, only a few methods were presented for 3D ultrasound speckle suppression. Yue and Clark [4] introduced a speckle suppression approach by an integration of the 3D nonlinear diffusion and 3D dyadic wavelet transform techniques, in which, normalized wavelet modulus was used as an edge map to expose the intrinsic speckle/edge relation. Based on a local distribution of variance for a given voxel, Veronika et al. [5] presented a
References
[1]
K. Z. Abd-Elmoniem, A.-B. M. Youssef, and Y. M. Kadah, “Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 9, pp. 997–1014, 2002.
[2]
S. Sudha, G. R. Suresh, and R. Sukanesh, “Speckle noise reduction in ultrasound images using context-based adaptive wavelet thresholding,” IETE Journal of Research, vol. 55, no. 3, pp. 135–143, 2009.
[3]
Y. Guo, Y. Wang, and T. Hou, “Speckle filtering of ultrasonic images using a modified non local-based algorithm,” Biomedical Signal Processing and Control, vol. 6, no. 2, pp. 129–138, 2011.
[4]
Y. Yue and J. W. Clark, “Speckle suppression for 3-D ultrasound images using nonlinear multiscale wavelet diffusion,” Progress in Biomedical Optics and Imaging, vol. 8, no. 32, 2007.
[5]
S. Veronika, S. H. Linn Emilie, W. Wolfgang, H. G. Odd, and V. Ivan, “Lowest-variance streamlines for filtering of 3D ultrasound,” in Proceedings of the Eurographics Workshop on Visual Computing for Biology and Medicine, pp. 41–48, 2012.
[6]
P. Coupé, P. Hellier, C. Kervrann, and C. Barillot, “Nonlocal means-based speckle filtering for ultrasound images,” IEEE Transactions on Image Processing, vol. 18, no. 10, pp. 2221–2229, 2009.
[7]
A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 60–65, June 2005.
[8]
B. Zhang, X. Yang, F. Yang et al., “The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography,” Optics Express, vol. 18, no. 19, pp. 20201–20214, 2010.
[9]
M. Ujaldon and U. V. Catalyurek, “High-performance signal processing on emerging many-core architectures using CUDA,” in Proceedings of the IEEE International Conference on Multimedia and Expo (ICME '09), pp. 1825–1828, July 2009.
[10]
J. S. Meredith, S. R. Alam, and J. S. Vetter, “Analysis of a computational biology simulation technique on emerging processing architectures,” in Proceedings of the 21st International Parallel and Distributed Processing Symposium (IPDPS '07), pp. 1–8, March 2007.
[11]
A. Badal and A. Badano, “Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit,” Medical Physics, vol. 36, no. 11, pp. 4878–4880, 2009.
[12]
E. M. Aldrich, J. Fernández-Villaverde, A. Ronald Gallant, and J. F. Rubio-Ramírez, “Tapping the supercomputer under your desk: solving dynamic equilibrium models with graphics processors,” Journal of Economic Dynamics and Control, vol. 35, no. 3, pp. 386–393, 2011.
[13]
P. Muyan-?zcelik, J. D. Owens, J. Xia, and S. S. Samant, “Fast deformable registration on the GPU: a CUDA implementation of demons,” in Proceedings of the International Conference on Computational Sciences and its Applications (ICCSA '08), pp. 223–233, July 2008.
[14]
A. Abramov, T. Kulvicius, F. W. W?rg?tter, and B. Dellen, “Realtime image segmentation on a GPU,” in Proceedings of Facing theMulticore-Challenge, vol. 6310 of Lecture Notes in Computer Science, pp. 131–142, Springer, 2011.
[15]
A. Eklund, O. Friman, M. Andersson, and H. Knutsson, “A GPU accelerated interactive interface for exploratory functional connectivity analysis of FMRI data,” in Proceedings of the 18th IEEE International Conference on Image Processing (ICIP '11), pp. 1621–1624, September 2011.
[16]
J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image processing with the bilateral grid,” in Proceedings of the International Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH '07), vol. 103, p. 9, August 2007.
[17]
Y. Su and Z. Xu, “Parallel implementation of wavelet-based image denoising on programmable PC-grade graphics hardware,” Signal Processing, vol. 90, no. 8, pp. 2396–2411, 2010.
[18]
F. Fontes, G. Barroso, P. Coupé, and P. Hellier, “Real time ultrasound image denoising,” Journal of Real-Time Image Processing, vol. 6, no. 1, pp. 15–22, 2011.
[19]
B. Goossens, H. Luong, J. Aelterman, A. Pizurica, and W. Philips, “A GPU-accelerated real-time NLMeans algorithm for denoising color video sequences,” in Proceedings of the 12th International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS '10), vol. 6475 of Lecture Notes in Computer Science, pp. 46–57, Springer, 2010.
[20]
Z. Tao, H. D. Tagare, and J. D. Beaty, “Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images,” IEEE Transactions on Medical Imaging, vol. 25, no. 11, pp. 1483–1491, 2006.
[21]
C. Kervrann, J. Boulanger, and P. Coupe, “Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal,” in Proceedings of the Scale Space and Variational Methods in Computer Vision, vol. 4485, pp. 520–532, 2007.
[22]
T. Loupas, W. N. McDicken, and P. L. Allan, “Adaptive weighted median filter for speckle suppression in medical ultrasonic images,” IEEE Transactions on Circuits and Systems, vol. 36, no. 1, pp. 129–135, 1989.
[23]
P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot, “An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images,” IEEE Transactions on Medical Imaging, vol. 27, no. 4, pp. 425–441, 2008.