全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Level Set Segmentation of Medical Images Based on Local Region Statistics and Maximum a Posteriori Probability

DOI: 10.1155/2013/570635

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes’ rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method. 1. Introduction Image segmentation is an important and necessary step in various image processing and computer vision applications. However, due to the imperfection of the image acquisition process, intensity inhomogeneity (or bias field) is often seen in many real-world images, especially in medical images [1]. For example, the intensity inhomogeneity in magnetic resonance (MR) images usually manifests itself as a smooth intensity variation across the image [2]. Thus the resultant intensities of the same tissue vary with the locations of the tissue within the image. This can cause serious misclassifications when intensity-based segmentation algorithms are used. Therefore, intensity inhomogeneity has been challenging difficulty in image segmentation. The level set method, originally used as numerical technique for tracking interfaces and shapes [3], has been increasingly applied to image segmentation in the past decades [4, 5]. Compared with the classical image segmentation methods such as edge detection, thresholding, and region growing, level set methods have three desirable advantages. First, they can achieve subpixel accuracy of object boundaries [6]. Second, they allow incorporation of various prior knowledge, for example, shape and intensity distribution, so as to get more robust segmentation [7, 8]. Third, they can provide smooth and closed contours as segmentation results, which are necessary and can be readily used for further applications such as shape analysis and

References

[1]  L. Wang, L. He, A. Mishra, and C. Li, “Active contours driven by local Gaussian distribution fitting energy,” Signal Processing, vol. 89, no. 12, pp. 2435–2447, 2009.
[2]  U. Vovk, F. Pernu?, and B. Likar, “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Transactions on Medical Imaging, vol. 26, no. 3, pp. 405–421, 2007.
[3]  S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics, vol. 79, no. 1, pp. 12–49, 1988.
[4]  D. Cremers, M. Rousson, and R. Deriche, “A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape,” International Journal of Computer Vision, vol. 72, no. 2, pp. 195–215, 2007.
[5]  L. He, Z. Peng, B. Everding et al., “A comparative study of deformable contour methods on medical image segmentation,” Image and Vision Computing, vol. 26, no. 2, pp. 141–163, 2008.
[6]  V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” International Journal of Computer Vision, vol. 22, no. 1, pp. 61–79, 1997.
[7]  Y. Chen, H. D. Tagare, S. Thiruvenkadam et al., “Using prior shapes in geometric active contours in a variational framework,” International Journal of Computer Vision, vol. 50, no. 3, pp. 315–328, 2002.
[8]  M. E. Leventon, W. E. L. Grimson, and O. Faugeras, “Statistical shape influence in geodesic active contours,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '00), vol. 1, pp. 316–323, IEEE Press, June 2000.
[9]  C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, “Minimization of region-scalable fitting energy for image segmentation,” IEEE Transactions on Image Processing, vol. 17, no. 10, pp. 1940–1949, 2008.
[10]  R. Kimmel, A. Amir, and A. M. Bruckstein, “Finding shortest paths on surfaces using level sets propagation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 6, pp. 635–640, 1995.
[11]  R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158–175, 1995.
[12]  A. Vasilevskiy and K. Siddiqi, “Flux maximizing geometric flows,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 12, pp. 1565–1578, 2002.
[13]  T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 266–277, 2001.
[14]  R. Ronfard, “Region-based strategies for active contour models,” International Journal of Computer Vision, vol. 13, no. 2, pp. 229–251, 1994.
[15]  C. Samson, L. Blanc-Féraud, G. Aubert, and J. Zerubia, “A variational model for image classification and restoration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 5, pp. 460–472, 2000.
[16]  A. Tsai, A. Yezzi Jr., and A. S. Willsky, “Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification,” IEEE Transactions on Image Processing, vol. 10, no. 8, pp. 1169–1186, 2001.
[17]  L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation using the Mumford and Shah model,” International Journal of Computer Vision, vol. 50, no. 3, pp. 271–293, 2002.
[18]  B. Rosenhahn, T. Brox, and J. Weickert, “Three-dimensional shape knowledge for joint image segmentation and pose tracking,” International Journal of Computer Vision, vol. 73, no. 3, pp. 243–262, 2007.
[19]  Y. Chen, J. Zhang, and J. Macione, “An improved level set method for brain MR images segmentation and bias correction,” Computerized Medical Imaging and Graphics, vol. 33, no. 7, pp. 510–519, 2009.
[20]  L. Wang, Y. Chen, X. Pan, X. Hong, and D. Xia, “Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy,” Journal of Neuroscience Methods, vol. 188, no. 2, pp. 316–325, 2010.
[21]  C. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, and J. C. Gore, “A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI,” IEEE Transactions on Image Processing, vol. 20, no. 7, pp. 2007–2016, 2011.
[22]  Y. Chen, J. Zhang, A. Mishra, and J. Yang, “Image segmentation and bias correction via an improved level set method,” Neurocomputing, vol. 74, no. 17, pp. 3520–3530, 2011.
[23]  Z. Shahvaran, K. Kazemi, M. S. Helfroush, N. Jafarian, and N. Noorizadeh, “Variational level set combined with Markov random field modeling for simultaneous intensity non-uniformity correction and segmentation of MR images,” Journal of Neuroscience Methods, vol. 209, no. 2, pp. 280–289, 2012.
[24]  J. P. Monaco, J. E. Tomaszewski, M. D. Feldman et al., “High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models,” Medical Image Analysis, vol. 14, no. 4, pp. 617–629, 2010.
[25]  J. Ashburner and K. J. Friston, “Unified segmentation,” NeuroImage, vol. 26, no. 3, pp. 839–851, 2005.
[26]  W. M. Wells III, W. E. L. Crimson, R. Kikinis, and F. A. Jolesz, “Adaptive segmentation of mri data,” IEEE Transactions on Medical Imaging, vol. 15, no. 4, pp. 429–442, 1996.
[27]  R. Guillemaud and M. Brady, “Estimating the bias field of MR images,” IEEE Transactions on Medical Imaging, vol. 16, no. 3, pp. 238–251, 1997.
[28]  K. van Leemput, F. Maes, D. Vandermeulen, and P. Suetens, “Automated model-based bias field correction of MR images of the brain,” IEEE Transactions on Medical Imaging, vol. 18, no. 10, pp. 885–896, 1999.
[29]  G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Springer, New York, NY, USA, 2002.
[30]  C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-initialization: a new variational formulation,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), vol. 1, pp. 430–436, IEEE Press, June 2005.
[31]  Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm,” IEEE Transactions on Medical Imaging, vol. 20, no. 1, pp. 45–57, 2001.
[32]  T. Goldstein, X. Bresson, and S. Osher, “Geometric applications of the Split Bregman method: segmentation and surface reconstruction,” Journal of Scientific Computing, vol. 45, no. 1–3, pp. 272–293, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133