全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Material Discrimination Based on K-edge Characteristics

DOI: 10.1155/2013/308520

Full-Text   Cite this paper   Add to My Lib

Abstract:

Spectral/multienergy CT employing the state-of-the-art energy-discriminative photon-counting detector can identify absorption features in the multiple ranges of photon energies and has the potential to distinguish different materials based on K-edge characteristics. K-edge characteristics involve the sudden attenuation increase in the attenuation profile of a relatively high atomic number material. Hence, spectral CT can utilize material K-edge characteristics (sudden attenuation increase) to capture images in available energy bins (levels/windows) to distinguish different material components. In this paper, we propose an imaging model based on K-edge characteristics for maximum material discrimination with spectral CT. The wider the energy bin width is, the lower the noise level is, but the poorer the reconstructed image contrast is. Here, we introduce the contrast-to-noise ratio (CNR) criterion to optimize the energy bin width after the K-edge jump for the maximum CNR. In the simulation, we analyze the reconstructed image quality in different energy bins and demonstrate that our proposed optimization approach can maximize CNR between target region and background region in reconstructed image. 1. Introduction X-ray computed tomography (CT) has been widely applied in clinical and preclinical applications, since Hounsfield’s Nobel Prize winning breakthrough. A typical conventional CT system employs a broad energy spectrum source and a digital integrating sensor whose output is proportional to the energy fluence integrated over the entire incidence spectrum. Physically, the X-ray spectrum contains much information; the conventional CT system collects photons over the whole X-ray spectrum to ignore spectral responses of materials. Hence, the conventional CT often does not have sufficiently high contrast resolution for biological soft tissues [1]. With the development of spectral detectors and novel contrast agents, CT image contrast resolution could be significantly improved. Recent advances in spectral/multienergy detector technology have allowed for spectral CT systems to identify absorption features in the multiple ranges of photon energies [2–6]. Spectral CT has a stronger capability to distinguish different materials because it can capture images in available energy bins [7–13]. Meanwhile, contrast agent has been widely applied in biomedical imaging to enhance tissue contrast [14–19]. Spectral CT imaging utilizes not only density characteristics of contrast agents but also K-edge characteristics of contrast agents to distinguish different materials.

References

[1]  G. Wang, H. Yu, and B. De Man, “An outlook on X-ray CT research and development,” Medical Physics, vol. 35, no. 3, pp. 1051–1064, 2008.
[2]  M. Campbell, E. H. M. Heijne, G. Meddeler, E. Pernigotti, and W. Snoeys, “A Readout Chip for a 64 × 64 Pixel Matrix with 15-bit Single Photon Counting,” IEEE Transactions on Nuclear Science, vol. 45, no. 3, pp. 751–753, 1998.
[3]  X. Llopart, M. Campbell, R. Dinapoli, D. San Segundo, and E. Pernigotti, “Medipix2: a 64?k pixel readout chip with 55-μm square elements working in single photon counting mode,” IEEE Transactions on Nuclear Science, vol. 49, no. 5, pp. 2279–2283, 2002.
[4]  R. Ballabriga, M. Campbell, E. Heijne, X. Llopart, L. Tlustos, and W. Wong, “Medipix3: a 64?k pixel detector readout chip working in single photon counting mode with improved spectrometric performance,” Nuclear Instruments and Methods in Physics Research A, vol. 633, no. 1, pp. S15–S18, 2011.
[5]  R. Ballabriga, G. Blaj, M. Campbell et al., “Characterization of the Medipix3 pixel readout chip,” Journal of Instrumentation, vol. 6, no. 1, pp. 1052–1058, 2011.
[6]  R. Ballabriga, M. Campbell, E. H. M. Heijne, X. Llopart, and L. Tlustos, “The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance,” IEEE Transactions on Nuclear Science, vol. 54, no. 5, pp. 1824–1829, 2007.
[7]  J. Giersch, M. Firsching, D. Niederl?hner, and G. Anton, “Material reconstruction with spectroscopic pixel X-ray detectors,” Nuclear Instruments and Methods in Physics Research A, vol. 546, no. 1-2, pp. 125–130, 2005.
[8]  M. Firsching, P. T. Talla, T. Michel, and G. Anton, “Material resolving X-ray imaging using spectrum reconstruction with Medipix2,” Nuclear Instruments and Methods in Physics Research A, vol. 591, no. 1, pp. 19–23, 2008.
[9]  E. C. Frey, X. Wang, Y. Du, et al., “Investigation of the use of photon counting X-ray detectors with energy discrimination capability for material decomposition in micro-computed tomography,” Physics of Medical Imaging, vol. 6510, pp. 93–103, 2007.
[10]  S. J. Nik, J. Meyer, and R. Watts, “Optimal material discrimination using spectral X-ray imaging,” Physics in Medicine and Biology, vol. 56, no. 18, pp. 5969–5983, 2011.
[11]  B. Norlin, A. Manuilskiy, H.-E. Nilsson, and C. Fr?jdh, “Material recognition with the Medipix photon counting colour X-ray system,” Nuclear Instruments and Methods in Physics Research A, vol. 531, no. 1-2, pp. 265–269, 2004.
[12]  H. Q. Le and S. Molloi, “Least squares parameter estimation methods for material decomposition with energy discriminating detectors,” Medical Physics, vol. 38, no. 1, pp. 245–255, 2011.
[13]  M. Firsching, D. Niederl?hner, T. Michel, and G. Anton, “Quantitative material reconstruction in CT with spectroscopic X-ray pixel detectors—A Simulation Study,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record, vol. 4, pp. 2257–2259, November 2006.
[14]  N. G. Anderson, A. P. Butler, N. J. A. Scott et al., “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” European Radiology, vol. 20, no. 9, pp. 2126–2134, 2010.
[15]  E. Roessl, B. Brendel, K.-J. Engel, J.-P. Schlomka, A. Thran, and R. Proksa, “Sensitivity of photon-counting based K-Edge Imaging in X-ray computed tomography,” IEEE Transactions on Medical Imaging, vol. 30, no. 9, pp. 1678–1690, 2011.
[16]  A. Abudurexiti, M. Kameda, E. Sato et al., “Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector,” Radiological Physics and Technology, vol. 3, no. 2, pp. 127–135, 2010.
[17]  Q. Xu, H. Y. Yu, J. Bennett, et al., “Image reconstruction for hybrid true-color micro-CT,” IEEE Transactions on Biomedical Engineering, vol. 59, pp. 1711–1719, 2012.
[18]  P. He, H. Y. Yu, P. Thayer, et al., “Preliminary experimental results from a MARS micro-CT system,” Journal of X-Ray Science and Technology, vol. 20, pp. 199–211, 2012.
[19]  M. Firsching, A. P. Butler, N. Scott, N. G. Anderson, T. Michel, and G. Anton, “Contrast agent recognition in small animal CT using the Medipix2 detector,” Nuclear Instruments and Methods in Physics Research A, vol. 607, no. 1, pp. 179–182, 2009.
[20]  S. J. Riederer and C. A. Mistretta, “Selective iodine imaging using K-edge energies in computerized X-ray tomography,” Medical Physics, vol. 4, no. 6, pp. 474–481, 1977.
[21]  J. P. Schlomka, E. Roessl, R. Dorscheid et al., “Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography,” Physics in Medicine and Biology, vol. 53, no. 15, pp. 4031–4047, 2008.
[22]  P. He, B. Wei, W. X. Cong, and G. Wang, “Optimization of K-edge Imaging with Spectral CT,” Medical Physics, vol. 39, pp. 6572–6579, 2012.
[23]  H. Hinghofer-Szalkay and J. E. Greenleaf, “Continuous monitoring of blood volume changes in humans,” Journal of Applied Physiology, vol. 63, no. 3, pp. 1003–1007, 1987.
[24]  J. R. Cameron, J. G. Skofronick, and R. M. Grant, Physics of the Body, Medical Physics, 1999.
[25]  A. I. Saito, J. G. Li, C. Liu, K. R. Olivier, and J. F. Dempsey, “Accurate heterogeneous dose calculation for lung cancer patients without high-resolution CT densities,” Journal of Applied Clinical Medical Physics, vol. 10, no. 2, pp. 92–103, 2009.
[26]  N. H. Clinthorne, “A constrained dual-energy reconstruction method for material-selective transmission tomography,” Nuclear Instruments and Methods in Physics Research A, vol. 353, no. 1–3, pp. 347–348, 1994.
[27]  G. Poludniowski, G. Landry, F. Deblois, P. M. Evans, and F. Verhaegen, “SpekCalc: a program to calculate photon spectra from tungsten anode X-ray tubes,” Physics in Medicine and Biology, vol. 54, no. 19, pp. N433–N438, 2009.
[28]  A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, 1988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133