全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Transcriptional Protein-Protein Cooperativity in POU/HMG/DNA Complexes Revealed by Normal Mode Analysis

DOI: 10.1155/2013/854710

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biomolecular cooperativity is of great scientific interest due to its role in biological processes. Two transcription factors (TFs), Oct-4 and Sox-2, are crucial in transcriptional regulation of embryonic stem cells. In this paper, we analyze how Oct-1 (a similar POU factor) and Sox-2, interact cooperatively at their enhancer binding sites in collective motions. Normal mode analysis (NMA) is implemented to study the collective motions of two complexes with each involving these TFs and an enhancer. The special structure of Oct proteins is analyzed comprehensively, after which each Oct/Sox group is reassembled into two protein pairs. We subsequently propose a segmentation idea to extract the most correlated segments in each pair, using correlations of motion magnitude curves. The median analysis on these correlation values shows the intimacy of subunit POUS (Oct-1) and Sox-2. Using those larger-than-median correlation values, we conduct statistical studies and propose several protein-protein cooperative modes (S and D) coupled with their subtypes. Additional filters are applied and similar results are obtained. A supplementary study on the rotation angle curves reaches an agreement with these modes. Overall, these proposed cooperative modes provide useful information for us to understand the complicated interaction mechanism in the POU/HMG/DNA complexes. 1. Introduction Embryonic stem cells (ES cells) possess the pluripotency of differentiating into all the three germ layers (endoderm, mesoderm, and ectoderm), which correspond to hundreds of cell types. These pluripotent stem cells are transcriptionally regulated by a number of transcription factors (TFs) [1]. A specific TF called Oct-4, belonging to the POU class of homeodomain proteins, is regarded as a necessity for maintaining the undifferentiated state of embryonic ES cells. Generally, Oct-4 interacts with other TFs as a group to affect the gene expression of mouse ES cells in early embryo development [2], and Oct-4 coupled with its cofactor Sox-2 (HMG-box domain) is at the center of this group. Botquin and Nishimoto have both proven the cooperative effects of Oct-4 and Sox-2 on the expression of several genes in mouse embryonic ES cells [3, 4]. Dailey and Basilico further bring forward the idea that the interaction within the POU/HMG group, especially for groups composed of Oct and Sox proteins, at DNA binding sites is a fundamental mechanism for transcriptional regulation in early embryo development [5]. At the early stage of transcription, TFs bind to specific regulatory DNA regions to

References

[1]  L. A. Boyer, I. L. Tong, M. F. Cole et al., “Core transcriptional regulatory circuitry in human embryonic stem cells,” Cell, vol. 122, no. 6, pp. 947–956, 2005.
[2]  M. Pesce and H. R. Sch?ler, “Oct-4: gatekeeper in the beginnings of mammalian development,” Stem Cells, vol. 19, no. 4, pp. 271–278, 2001.
[3]  V. Botquin, H. Hess, G. Fuhrmann et al., “New POU dimer configuration mediates antagonistic control of an osteopontin preimplantation enhancer by Oct-4 and Sox-2,” Genes and Development, vol. 12, no. 13, pp. 2073–2090, 1998.
[4]  M. Nishimoto, A. Fukushima, A. Okuda, and M. Muramatsu, “The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2,” Molecular and Cellular Biology, vol. 19, no. 8, pp. 5453–5465, 1999.
[5]  L. Dailey and C. Basilico, “Coevolution of HMG domains and homeodomains and the generation of transcriptional regulation by Sox/POU complexes,” Journal of Cellular Physiology, vol. 186, pp. 315–328, 2001.
[6]  M. J. Borok, D. A. Tran, M. C. W. Ho, and R. A. Drewell, “Dissecting the regulatory switches of development: lessons from enhancer evolution in Drosophila,” Development, vol. 137, no. 1, pp. 5–13, 2010.
[7]  A. Warshel, “Molecular dynamics simulations of biological reactions,” Accounts of Chemical Research, vol. 35, pp. 385–395, 2002.
[8]  G. G. Dodson, D. P. Lane, and C. S. Verma, “Molecular simulations of protein dynamics: new windows on mechanisms in biology,” EMBO Reports, vol. 9, no. 2, pp. 144–150, 2008.
[9]  I. Bahar, T. R. Lezon, A. Bakan, and I. H. Shrivastava, “Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins,” Chemical Reviews, vol. 110, no. 3, pp. 1463–1497, 2010.
[10]  I. Bahar and A. J. Rader, “Coarse-grained normal mode analysis in structural biology,” Current Opinion in Structural Biology, vol. 15, no. 5, pp. 586–592, 2005.
[11]  B. Erman, “The Gaussian network model: precise prediction of residue fluctuations and application to binding problems,” Biophysical Journal, vol. 91, no. 10, pp. 3589–3599, 2006.
[12]  A. R. Atilgan, S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and I. Bahar, “Anisotropy of fluctuation dynamics of proteins with an elastic network model,” Biophysical Journal, vol. 80, no. 1, pp. 505–515, 2001.
[13]  S. Hayward, A. Kitao, and H. J. Berendsen, “Model-free methods of analyzing domain motions in proteins from simulation: a comparison of normal mode analysis and molecular dynamics simulation of lysozyme,” Proteins, vol. 27, pp. 425–437, 1997.
[14]  S. Hayward, A. Kitao, and N. Go, “Harmonic and anharmonic aspects in the dynamics of BPTI: a normal mode analysis and principal component analysis,” Protein Science, vol. 3, no. 6, pp. 936–943, 1994.
[15]  D. G. Teotico, M. L. Frazier, F. Ding, N. V. Dokholyan, B. R. S. Temple, and M. R. Redinbo, “Active nuclear receptors exhibit highly correlated AF-2 domain motions,” PLoS Computational Biology, vol. 4, no. 7, Article ID e1000111, 2008.
[16]  E. Lindahl, C. Azuara, P. Koehl, and M. Delarue, “NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis,” Nucleic Acids Research, vol. 34, pp. W52–W56, 2006.
[17]  R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, Pa, USA, 1998.
[18]  H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000.
[19]  E. F. Pettersen, T. D. Goddard, C. C. Huang et al., “UCSF Chimera—a visualization system for exploratory research and analysis,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1605–1612, 2004.
[20]  A. Reményi, K. Lins, L. J. Nissen, R. Reinbold, H. R. Sch?ler, and M. Wilmanns, “Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers,” Genes and Development, vol. 17, no. 16, pp. 2048–2059, 2003.
[21]  D. C. Williams Jr., M. Cai, and G. M. Clore, “Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1.Sox2.Hoxb1-DNA ternary transcription factor complex,” Journal of Biological Chemistry, vol. 279, no. 2, pp. 1449–1457, 2004.
[22]  B. G. H?ne, K. J?ger, and H. G. Drexler, “The Pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms,” Electrophoresis, vol. 14, no. 10, pp. 967–972, 1993.
[23]  T. R. Derrick, B. T. Bates, and J. S. Dufek, “Evaluation of time-series data sets using the Pearson product-moment correlation coefficient,” Medicine and Science in Sports and Exercise, vol. 26, no. 7, pp. 919–928, 1994.
[24]  A. K. Gayen, “The frequency distribution of the product-moment correlation coefficient in random samples of any size drawn from non-normal universes,” Biometrika, vol. 38, no. 1-2, pp. 219–247, 1951.
[25]  D. D. Wang and H. Yan, “The relationship between periodic dinucleotides and the nucleosomal DNA deformation revealed by normal mode analysis,” Physical Biology, vol. 8, no. 6, Article ID 066004, 2011.
[26]  Y.-N. Zhang, X.-Y. Pan, Y. Huang, and H.-B. Shen, “Adaptive compressive learning for prediction of protein-protein interactions from primary sequence,” Journal of Theoretical Biology, vol. 283, no. 1, pp. 44–52, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133