全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mathematical Modeling of the HIV/Kaposi’s Sarcoma Coinfection Dynamics in Areas of High HIV Prevalence

DOI: 10.1155/2013/753424

Full-Text   Cite this paper   Add to My Lib

Abstract:

We formulate a deterministic system of ordinary differential equations to quantify HAART treatment levels for patients co-infected with HIV and Kaposi's Sarcoma in a high HIV prevalence setting. A qualitative stability analysis of the equilibrium states is carried out and we find that the disease-free equilibrium is globally attracting whenever the reproductive number . A unique endemic equilibrium exists and is locally stable whenever . Therefore, reducing to below unity should be the goal for disease eradication. Provision of HAART is shown to provide dual benefit of reducing HIV spread and the risk of acquiring another fatal disease for HIV/AIDS patients. By providing treatment to 10% of the HIV population, about 87% of the AIDS population acquire protection against coinfection with HIV and Kaposi's Sarcoma (KS). Most sub-Sahara African countries already have programmes in place to screen HIV. Our recommendation is that these programmes should be expanded to include testing for HHV-8 and KS counseling. 1. Introduction Kaposi's Sarcoma is a cancer that occurs mostly in humans with suppressed immune systems [1]. The development of this cancer depends upon prior infection to the human herpesvirus-8 (HHV-8) [2], a virus which is usually transmitted either sexually or via saliva [3]. For HIV-related Kaposi's Sarcoma development, immunosuppression is a necessary causal factor [2]. Because HIV is an immunosuppressive virus, it promotes the development of Kaposi's Sarcoma in individuals dually infected with both viruses (HIV and HHV-8) and this combination has proved to be fatal and has made Kaposi's Sarcoma the fourth largest killer of people living with HIV/AIDS in sub-Sahara Africa [4]. In competent immune systems, acquisition of HHV-8 does not guarantee the development of KS; in fact, most individuals with a strong immune response could remain latently infected with HHV-8 throughout their lifetime [2]. The HIV-1 growth factors stimulate the immune cells including the healthy and infected B-cells to proliferate. The activation of latently infected B-cells to proliferate only leads to production of more HHV-8 that, according to the theory proposed by Foreman et al. [2], may be responsible for infection of progenitor cells of endothelial origin, which once infected with HHV-8 develop into Kaposi's Sarcoma cells [2]. Recent research findings [12] show that highly active antiretroviral therapy (HAART) for HIV significantly decreases (and, in some instances, completely forces the cancer into remission) KS activity in a patient, but such treatment is only

References

[1]  Biotrin International, “HHV-8: questions and answers,” 2005, http://www.diasorin.com/HHV8/FAQ.html.
[2]  K. E. Foreman, J. Friborg Jr., W.-P. Kong et al., “Propagation of a human herpesvirus from AIDS-associated Kaposi's sarcoma,” New England Journal of Medicine, vol. 336, no. 3, pp. 163–171, 1997.
[3]  D. C. Dugdale III, J. M. Vyas, D. Zieve, et al., “Kaposi’s sarcoma,” PubMed, 2012, http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001682.
[4]  F. Sitas, M. Parkin, Z. Chirenje, L. Stein, N. Mqoqi, and H. Wabinga, “Cancers,” in Disease and Mortality in Sub-Saharan Africa, chapter 20, 2nd edition, 2013.
[5]  R. F. Baggaley, R. G. White, and M. C. Boily, “Systematic review of orogenital HIV-1 transmission probabilities,” International Journal of Epidemiology, vol. 37, no. 6, pp. 1255–1265, 2008.
[6]  M.-C. Boily, R. F. Baggaley, L. Wang et al., “Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies,” The Lancet Infectious Diseases, vol. 9, no. 2, pp. 118–129, 2009.
[7]  N. J. Malunguza, S. D. Hove-Musekwa, G. Musuka, and Z. Mukandavire, “Investigating al-cohol consumption as a risk factor for HIV transmission in heterosexual settings in sub-saharan african communities,” Bulletin of Mathematical Biology, vol. 74, no. 9, pp. 2094–2124, 2012.
[8]  Z. Mukandavire, C. Chiyaka, G. Magombedze, G. Musuka, and N. J. Malunguza, “Assessing the effects of homosexuals and bisexuals on the intrinsic dynamics of HIV/AIDS in heterosexual settings,” Mathematical and Computer Modelling, vol. 49, no. 9-10, pp. 1869–1882, 2009.
[9]  K. Barley, D. Murillo, S. Roudenko, A. M. Tameru, and S. Tatum, “A mathematical model of HIV and malaria co-infection in sub-saharan Africa,” Journal of AIDS and Clinical Research, vol. 3, no. 7, pp. 1–7, 2012.
[10]  Z. Mukandavire and W. Garira, “Sex-structured HIV/AIDS model to analyse the effects of condom use with application to Zimbabwe,” Journal of Mathematical Biology, vol. 54, no. 5, pp. 669–699, 2007.
[11]  Z. Mukandavire, N. J. Malunguza, C. Chiyaka, G. Musuka, and J. M. Tchuenche, “HIV/AIDS model assessing the effects of gender-inequality affecting women in african heterosexual settings,” International Journal of Biomathematics, vol. 3, no. 1, pp. 43–67, 2009.
[12]  E. M. Lungu, “Stability of non-autonomous co-infection models,” in Proceedings of the 7th ICIAM Congress, 2011, https://www.masamu.auburn.edu/ConMan/ConMan.
[13]  T. Cohen, M. Lipsitch, R. P. Walensky, and M. Murray, “Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV-tuberculosis coinfected populations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 7042–7047, 2006.
[14]  L.-I. W. Roeger, Z. Feng, and C. Castillo-Chavez, “Modeling TB and HIV co-infections,” Mathematical Biosciences and Engineering, vol. 6, no. 4, pp. 815–837, 2009.
[15]  S. Ramkissoon, H. G. Mwambi, and A. P. Matthews, “Modelling HIV and MTB co-infection including combined treatment strategies,” PLoS One, vol. 7, no. 11, Article ID e49492, 2012.
[16]  C. Chiyaka, J. M. Tchuenche, W. Garira, and S. Dube, “A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria,” Applied Mathematics and Computation, vol. 195, no. 2, pp. 641–662, 2008.
[17]  Z. Mukandavire, A. B. Gumel, W. Garira, and J. M. Tchuenche, “Mathematical analysis of a model for HIV-malaria co-infection,” Mathematical Biosciences and Engineering, vol. 6, no. 2, pp. 333–362, 2009.
[18]  http://www.webmd.com/hiv-aids/guide/aids-hiv-opportunistic-infections-kaposis-sarcoma__.
[19]  J. H. Von Roenn, “Treatment of HIV-associated kaposi sarcoma,” 2003, http://hivinsite.ucsf.edu/InSite?page=kb-06-02-04.
[20]  D. P. Wilson, G. L. Matthew, A. E. Grulich, D. A. Cooper, and J. A. Kaldor, “Relation between HIV viral load and infectiousness: a model-based anal-ysis,” The Lancet, vol. 372, no. 9635, pp. 314–320, 2013.
[21]  P. Van Den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, pp. 29–48, 2002.
[22]  C. Castillo-Chavez, Z. Feng, and W. Huang, “On the computation of ?0 and its role on global stability,” http://math.la.asu.edu/chavez/2002/JB276.pdf.
[23]  O. Sharomi and A. B. Gumel, “Re-infection-induced backward bifurcation in the transmission dynamics of chlamydia trachomatis,” Journal of Mathematical Analysis and Applications, vol. 356, no. 1, pp. 96–118, 2009.
[24]  J. Carr, Applications Centre Manifold Theory, Springer, New York, NY, USA, 1981.
[25]  C. Castillo-Chavez and B. Song, “Dynamical models of tuberculosis and their applications,” Mathematical Biosciences and Engineering, vol. 1, no. 2, pp. 361–404, 2004.
[26]  H. Nishiura, “Correcting the actual reproduction number: a simple method to estimate R0 from early epidemic growth data,” International Journal of Environmental Research and Public Health, vol. 7, no. 1, pp. 291–302, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133