全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Voxel-Map Quantitative Analysis Approach for Atherosclerotic Noncalcified Plaques of the Coronary Artery Tree

DOI: 10.1155/2013/957195

Full-Text   Cite this paper   Add to My Lib

Abstract:

Noncalcified plaques (NCPs) are associated with the presence of lipid-core plaques that are prone to rupture. Thus, it is important to detect and monitor the development of NCPs. Contrast-enhanced coronary Computed Tomography Angiography (CTA) is a potential imaging technique to identify atherosclerotic plaques in the whole coronary tree, but it fails to provide information about vessel walls. In order to overcome the limitations of coronary CTA and provide more meaningful quantitative information for percutaneous coronary intervention (PCI), we proposed a Voxel-Map based on mathematical morphology to quantitatively analyze the noncalcified plaques on a three-dimensional coronary artery wall model (3D-CAWM). This approach is a combination of Voxel-Map analysis techniques, plaque locating, and anatomical location related labeling, which show more detailed and comprehensive coronary tree wall visualization. 1. Introduction Noncalcified plaque (NCP, referred to as “soft plaque”) [1] usually shows lower attenuation values than calcified plaque in a CT image, which has been associated with the presence of lipid-core plaques [2]. Retrospective studies have shown an association between plaques containing non-calcified components and acute coronary syndrome (ACS) [3, 4]. Therefore, it is important to detect and monitor the progress of NCPs. According to whether or not the body has to be injured during detection of a lesion, the imaging techniques for detection and quantitative analysis of NCPs are classified into two categories: invasive methods and noninvasive methods [5]. Imaging techniques, such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT), provide detailed visualization of luminal and plaque morphology and reliable quantification of the atheroma burden and its composition [5]. Although intravascular techniques have good discriminability for NCPs, they are invasive and expensive and can only be performed in proximal vessel segments [6]. Therefore, they are not appropriate to monitor the progress of NCPs of the whole coronary tree over a short time interval. Compared with intravascular ultrasound (IVUS), contrast-enhanced coronary Computed Tomography Angiography (CTA) has the advantages of being noninvasive, convenient, and economical and offers excellent diagnostic accuracy for coronary plaques [6–10]. The potential of these imaging techniques to identify atherosclerotic plaques in the whole coronary tree has raised the interest of radiologists [11]. The range of attenuation relevance to different types of plaque in CTA has been

References

[1]  S. Voros, S. Rinehart, Z. Qian et al., “Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis,” Journal of the American College of Cardiology, vol. 4, no. 5, pp. 537–548, 2011.
[2]  C. L. Schlett, M. Ferencik, C. Celeng, et al., “How to assess non-calcified plaque in CT angiography: delineation methods affect diagnostic accuracy of low-attenuation plaque by CT for lipid-core plaque in histology,” European Heart Journal, vol. 14, no. 11, pp. 1099–1105, 2013.
[3]  S. Motoyama, T. Kondo, M. Sarai et al., “Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes,” Journal of the American College of Cardiology, vol. 50, no. 4, pp. 319–326, 2007.
[4]  J. D. Schuijf, T. Beck, C. Burgstahler et al., “Differences in plaque composition and distribution in stable coronary artery disease versus acute coronary syndromes; non-invasive evaluation with multi-slice computed tomography,” Acute Cardiac Care, vol. 9, no. 1, pp. 48–53, 2007.
[5]  C. Bourantas, H. Garcia-Garcia, K. Naka, et al., “Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclerosis,” Journal of the American College of Cardiology, vol. 61, no. 13, pp. 1369–1378, 2013.
[6]  H. Brodoefel, C. Burgstahler, A. Sabir et al., “Coronary plaque quantification by voxel analysis: dual-source MDCT angiography versus intravascular sonography,” The American Journal of Roentgenology, vol. 192, no. 3, pp. W84–W89, 2009.
[7]  H. Brodoefel, C. Burgstahler, M. Heuschmid et al., “Accuracy of dual-source CT in the characterisation of non-calcified plaque: use of a colour-coded analysis compared with virtual histology intravascular ultrasound,” British Journal of Radiology, vol. 82, no. 982, pp. 805–812, 2009.
[8]  A. W. Leber, A. Becker, A. Knez et al., “Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound,” Journal of the American College of Cardiology, vol. 47, no. 3, pp. 672–677, 2006.
[9]  H. C. Stary, A. B. Chandler, R. E. Dinsmore et al., “A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 9, pp. 1512–1531, 1995.
[10]  J. Sun, Z. Zhang, B. Lu et al., “Identification and quantification of coronary atherosclerotic plaques: a comparison of 64-MDCT and intravascular ultrasound,” The American Journal of Roentgenology, vol. 190, no. 3, pp. 748–754, 2008.
[11]  T. C. Villines, F. S. Rinehart, Z. Qian, et al., “Coronary atherosclerosis imaging by coronary CT angiography,” in Atherosclerosis: Clinical Perspectives Through Imaging, pp. 127–161, Springer, 2013.
[12]  M. Schmid, S. Achenbach, D. Ropers et al., “Assessment of changes in non-calcified atherosclerotic plaque volume in the left main and left anterior descending coronary arteries over time by 64-slice computed tomography,” The American Journal of Cardiology, vol. 101, no. 5, pp. 579–584, 2008.
[13]  D. Dey, T. Schepis, M. Marwan, P. J. Slomka, D. S. Berman, and S. Achenbach, “Automated three-dimensional quantification of noncalcified coronary plaque from coronary CT angiography: comparison with intravascular US,” Radiology, vol. 257, no. 2, pp. 516–522, 2010.
[14]  C. Burgstahler, A. Reimann, T. Beck et al., “Influence of a lipid-lowering therapy on calcified and noncalcified coronary plaques monitored by multislice detector computed tomography: results of The New Age II Pilot study,” Investigative Radiology, vol. 42, no. 3, pp. 189–195, 2007.
[15]  M. E. Clouse, A. Sabir, C.-S. Yam et al., “Measuring noncalcified coronary atherosclerotic plaque using voxel analysis with MDCT angiography: a pilot clinical study,” The American Journal of Roentgenology, vol. 190, no. 6, pp. 1553–1560, 2008.
[16]  P. M. Carrascosa, C. M. Capu?ay, P. Garcia-Merletti, J. Carrascosa, and M. J. Garcia, “Characterization of coronary atherosclerotic plaques by multidetector computed tomography,” The American Journal of Cardiology, vol. 97, no. 5, pp. 598–602, 2006.
[17]  K. Pohle, S. Achenbach, B. MacNeill et al., “Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS,” Atherosclerosis, vol. 190, no. 1, pp. 174–180, 2007.
[18]  W. G. Austen, J. E. Edwards, R. L. Frye et al., “A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association,” Circulation, vol. 51, no. 4, pp. 5–40, 1975.
[19]  L. Najman and H. Talbot, Mathematical Morphology, John Wiley & Sons, 2013.
[20]  D. Kang, P. J. Slomka, R. Nakazato, et al., “Automated knowledge-based detection of nonobstructive and obstructive arterial lesions from coronary CT angiography,” Medical Physics, vol. 40, no. 4, Article ID 041912, 2013.
[21]  D. Dey, V. Y. Cheng, P. J. Slomka et al., “Automated 3-dimensional quantification of noncalcified and calcified coronary plaque from coronary CT angiography,” Journal of Cardiovascular Computed Tomography, vol. 3, no. 6, pp. 372–382, 2009.
[22]  S. Abbara, A. Arbab-Zadeh, T. Q. Callister et al., “SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee,” Journal of Cardiovascular Computed Tomography, vol. 3, no. 3, pp. 190–204, 2009.
[23]  G. Yang, A. Broersen, R. Petr et al., “Automatic coronary artery tree labeling in coronary computed tomographic angiography datasets,” in Proceedings of the Computing in Cardiology (CinC '11), pp. 109–112, Hangzhou, China, September 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133