Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image, from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously. The thin-plate spline interpolation method is employed to transform the simulation image between polar and rectangular coordinate systems. The Kaiser window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results show that the developed method is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose. 1. Introduction The imaging principle behind an ultrasound is that the ultrasound wave generates a different amount of reflection or refraction when accounting for different tissues inside the human body. Given that the shape, density, and structure of different organs vary, the amounts of wavelets that are reflected or refracted can be used to reconstruct the anatomical structure of human tissues. Based on the wave pattern and image features, combined with personal anatomical and pathological knowledge, the texture and pathological characteristics of a specific organ can be quantified for medical professionals. Over the past decades, the ultrasound imaging technique has played increasingly important role in clinical diagnosis. As a fast and safe method of imaging, ultrasound is the most ideal imaging modality for real-time image-guided navigation in minimally intrusive surgery [1–3]. However, the ultrasound image is usually mixed with a high level of noise and the anatomical structure is not as clear as that in CT and MRI [4]. Hence, a successful ultrasound doctor has to possess a huge amount of anatomical knowledge, as well as considerable clinical
References
[1]
H. Maul, A. Scharf, P. Baier et al., “Ultrasound simulators: experience with the SonoTrainer and comparative review of other training systems,” Ultrasound in Obstetrics and Gynecology, vol. 24, no. 5, pp. 581–585, 2004.
[2]
K. Cleary and T. M. Peters, “Image-guided interventions: technology review and clinical applications,” Annual Review of Biomedical Engineering, vol. 12, pp. 119–142, 2010.
[3]
S. Beller, M. Hünerbein, T. Lange, et al., “Image—guided surgery of liver metastases by three-dimensional ultrasound—based optoelectronic navigation,” British Journal of Surgery, vol. 94, no. 7, pp. 866–875, 2007.
[4]
C. Forest, O. Comas, C. Vaysière, L. Soler, and J. Marescaux, “Ultrasound and needle insertion simulators built on real patient-based data,” Studies in Health Technology and Informatics, vol. 125, pp. 136–139, 2007.
[5]
M. M. Knudson and A. C. Sisley, “Training residents using simulation technology: experience with ultrasound for trauma,” Journal of Trauma, vol. 48, no. 4, pp. 659–665, 2000.
[6]
C. Terkamp, G. Kirchner, J. Wedemeyer et al., “Simulation of abdomen sonography. Evaluation of a new ultrasound simulator,” Ultraschall in der Medizin, vol. 24, no. 4, pp. 239–244, 2003.
[7]
M. P. Laguna, T. M. De Reijke, and J. J. De La Rosette, “How far will simulators be involved into training?” Current Urology Reports, vol. 10, no. 2, pp. 97–105, 2009.
[8]
D. Henry, J. Troccaz, J. Bosson, and O. Pichot, “Ultrasound imaging simulation: application to the diagnosis of deep venous thromboses of lower limbs,” in Proceedings of the Medical Image Computing and Computer-Assisted Interventation (MICCAI '98), pp. 1032–1040, 1998.
[9]
M. Weidenbach, C. Wick, S. Pieper et al., “Augmented reality simulator for training in two-dimensional echocardiography,” Computers and Biomedical Research, vol. 33, no. 1, pp. 11–22, 2000.
[10]
R. Shams, R. Hartley, and N. Navab, “Real-time simulation of medical ultrasound from CT images,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '08), pp. 734–741, 2008.
[11]
O. Kutter, R. Shams, and N. Navab, “Visualization and GPU-accelerated simulation of medical ultrasound from CT images,” Computer Methods and Programs in Biomedicine, vol. 94, no. 3, pp. 250–266, 2009.
[12]
T. Reichl, J. Passenger, O. Acosta, and O. Salvado, “Ultrasound goes GPU: real-time simulation using CUDA,” in Proceedings of the Medical Imaging: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 7261, Lake Buena Vista, Fla, USA, February 2009.
[13]
A. Hostettler, C. Forest, A. Forgione, L. Soler, and J. Marescaux, “Real-time ultrasonography simulator based on 3D CT-scan images,” Studies in Health Technology and Informatics, vol. 111, pp. 191–193, 2005.
[14]
S. Mansurova, P. M. Zarate, P. Rodriguez, S. Stepanov, S. K?ber, and K. Meerholz, “Non-steady-state photoelectromotive force effect under linear and periodical phase modulation: application to detection of Doppler frequency shift,” Optics Letters, vol. 37, no. 3, pp. 383–385, 2012.
[15]
A. M. Bazen and S. H. Gerez, “Fingerprint matching by thin-plate spline modelling of elastic deformations,” Pattern Recognition, vol. 36, no. 8, pp. 1859–1867, 2003.
[16]
A. Rosas and M. Bastir, “Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex,” American Journal of Physical Anthropology, vol. 117, no. 3, pp. 236–245, 2002.
[17]
Y. P. Lin and P. Vaidyanathan, “A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks,” IEEE Signal Processing Letters, vol. 5, no. 6, pp. 132–134, 1998.
[18]
A. Frangi, W. Niessen, K. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” in Proceedings of the Medical Image Computing and Computer-Assisted Interventation (MICCAI '98), pp. 130–137, 1998.
[19]
Y. Wang, Y. Shen, J. Zhou et al., “Dual-beam-reflection phenomenon due to leaky modes in a photonic band gap,” Optics Communications, vol. 284, no. 5, pp. 1123–1126, 2011.
[20]
H. Chui and A. Rangarajan, “A new point matching algorithm for non-rigid registration,” Computer Vision and Image Understanding, vol. 89, no. 2-3, pp. 114–141, 2003.
[21]
K. Thangavel, R. Manavalan, and I. L. Aroquiaraj, “Removal of speckle noise from ultrasound medical image based on special filters: comparative study,” ICGST-GVIP Journal, vol. 9, pp. 25–32, 2009.
[22]
F. Palhano Xavier de Fontes, G. Andrade Barroso, P. Coupé, and P. Hellier, “Real time ultrasound image denoising,” Journal of Real-Time Image Processing, vol. 6, no. 1, pp. 15–22, 2011.
[23]
J. M. Sanches, J. C. Nascimento, and J. S. Marques, “Proceedings of the Medical image noise reduction using the Sylvester-Lyapunov equation,” IEEE Transactions on Image Processing, vol. 17, no. 9, pp. 1522–1539, 2008.
[24]
W. Wein, A. Khamene, D. A. Clevert, et al., “Simulation and fully automatic multimodal registration of medical ultrasound,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '07), pp. 136–143, 2007.
[25]
K. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues, CRC, 1993.
[26]
B. Li, S. Wang, and Y. Huang, “Aluminum diffuser of Lambert scattering and high reflectivity based on abrasion and sodium hydroxide corrosion,” Journal of Modern Optics, vol. 57, no. 13, pp. 1189–1193, 2010.
[27]
H. Roitner and P. Burgholzer, “Efficient modeling and compensation of ultrasound attenuation losses in photoacoustic imaging,” Inverse Problems, vol. 27, no. 1, Article ID 015003, 2011.
[28]
S. J. S. Chen, P. Hellier, J. Y. Gauvrit, M. Marchal, X. Morandi, and D. L. Collins, “An anthropomorphic polyvinyl alcohol triple-modality brain phantom based on Colin27,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '10), pp. 92–100, Springer, 2010.