The aim of this paper is to develop two delayed SEIR epidemic models with nonlinear incidence rate, continuous treatment, and impulsive vaccination for a class of epidemic with latent period and vertical transition. For continuous treatment, we obtain a basic reproductive number and prove the global stability by using the Lyapunov functional method. We obtain two thresholds and for impulsive vaccination and prove that if then the disease-free periodic solution is globally attractive and if then the disease is permanent by using the comparison theorem of impulsive differential equation. Numerical simulations indicate that pulse vaccination strategy or a longer latent period will make the population size infected by a disease decrease. 1. Introduction Mathematical models describing the population dynamics of infectious diseases have been playing an important role in understanding epidemiological patterns and disease control. Researchers have studied the epidemic models by ordinary differential equations [1–3] and the references cited therein. A customarily epidemic model is susceptible, infectious, and recovered model (SIR for short) [4–7]. But in real life, many diseases have a period of incubation time inside the hosts before the hosts become infectious; if we include incubation period of the hosts, the model is described as SEIR model. As tuberculosis (TB), measles and so on, a susceptible individual becomes exposed (infected but not infective) by adequate contact with an infectious individual. SEIR infections disease model has been studied by many authors for its important biological meaning [8–13]. In [13], the authors considered the following delayed SEIR epidemic model: where , , , and represent the number of individuals who are susceptible, exposed, infected, and removed, respectively. The parameters , , , and are positive constants, and here is the constant recruitment rate into the population, is the contact rate, is the birth and death rate, is the removal rate. represents a time delay describing the latent period of the disease and the term represents the individuals surviving in the latent period and becoming infective at time . The sufficient conditions are obtained for the global asymptotic stability of the endemic equilibrium. In the study of epidemic model, the spread of an infectious disease is a crucial issue, which depends on both the population behavior and the infectivity of the disease. These two aspects are captured in the incidence rate of a disease. In many epidemiological models, the incidence rate is described as mass action
References
[1]
M. E. Alexander and S. M. Moghadas, “Periodicity in an epidemic model with a generalized non-linear incidence,” Mathematical Biosciences, vol. 189, no. 1, pp. 75–96, 2004.
[2]
R. M. Anderson and R. M. May, Eds., Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, New York, NY, USA, 1991.
[3]
Y. Jin, W. Wang, and S. Xiao, “An SIRS model with a nonlinear incidence rate,” Chaos, Solitons and Fractals, vol. 34, no. 5, pp. 1482–1497, 2007.
[4]
A. Korobeinikov, “Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,” Bulletin of Mathematical Biology, vol. 68, no. 3, pp. 615–626, 2006.
[5]
L. Nie, Z. Teng, and A. Torres, “Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination,” Nonlinear Analysis: Real World Applications, vol. 13, no. 4, pp. 1621–1629, 2012.
[6]
X. Meng and L. S. Chen, “The dynamics of a new SIR epidemic model concerning pulse vaccination strategy,” Applied Mathematics and Computation, vol. 197, no. 2, pp. 582–597, 2008.
[7]
D. Xiao and S. Ruan, “Global analysis of an epidemic model with nonmonotone incidence rate,” Mathematical Biosciences, vol. 208, no. 2, pp. 419–429, 2007.
[8]
A. d'Onofrio, “Stability properties of pulse vaccination strategy in SEIR epidemic model,” Mathematical Biosciences, vol. 179, no. 1, pp. 57–72, 2002.
[9]
M. A. Safi and S. M. Garba, “Global stability analysis of SEIR model with holling type II incidence function,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 826052, 8 pages, 2012.
[10]
S. Gao, Z. Teng, and D. Xie, “The effects of pulse vaccination on SEIR model with two time delays,” Applied Mathematics and Computation, vol. 201, no. 1-2, pp. 282–292, 2008.
[11]
G. Li and Z. Jin, “Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period,” Chaos, Solitons and Fractals, vol. 25, no. 5, pp. 1177–1184, 2005.
[12]
S. Gao, L. S. Chen, and Z. Teng, “Impulsive vaccination of an SEIRS model with time delay and varying total population size,” Bulletin of Mathematical Biology, vol. 69, no. 2, pp. 731–745, 2007.
[13]
R. Xu and Z. Ma, “Global stability of a delayed SEIRS epidemic model with saturation incidence rate,” Nonlinear Dynamics, vol. 61, no. 1-2, pp. 229–239, 2010.
[14]
R. M. Anderson and R. M. May, “Regulation and stability of host-parasite population interactions. I. Regulatory processes,” Journal of Animal Ecology, vol. 47, no. 1, pp. 219–247, 1978.
[15]
W. M. Liu, H. W. Hethcote, and S. A. Levin, “Dynamical behavior of epidemiological models with nonlinear incidence rates,” Journal of Mathematical Biology, vol. 25, no. 4, pp. 359–380, 1987.
[16]
W. M. Liu, S. A. Levin, and Y. Iwasa, “Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models,” Journal of Mathematical Biology, vol. 23, no. 2, pp. 187–204, 1985.
[17]
M. Herrera, et al., “Modeling the spread of tuberculosis in semiclosed communities,” Computational and Mathematical Methods in Medicine, vol. 2013, Article ID 648291, 19 pages, 2013.
[18]
A. d'Onofrio, “On pulse vaccination strategy in the SIR epidemic model with vertical transmission,” Applied Mathematics Letters, vol. 18, no. 7, pp. 729–732, 2005.
[19]
Z. Lu, X. Chi, and L. S. Chen, “The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission,” Mathematical and Computer Modelling, vol. 36, no. 9-10, pp. 1039–1057, 2002.
[20]
M. Kgosimore and E. M. Lungu, “The effects of vaccination and treatment on the spread of HIV/AIDS,” Journal of Biological Systems, vol. 12, no. 4, pp. 399–417, 2004.
[21]
M. C. Boily and R. M. Anderson, “Sexual contact patterns between men and women and the spread of HIV-1 in urban centres in Africa,” IMA Journal of Mathematics Applied in Medicine and Biology, vol. 8, no. 4, pp. 221–247, 1991.
[22]
A. B. Sabin, “Measles, killer of millions in developing countries: strategy for rapid elimination and continuing control,” European Journal of Epidemiology, vol. 7, no. 1, pp. 1–22, 1991.
[23]
C. A. de Quadros, J. K. Andrus, J. Olive et al., “Eradication of poliomyelitis: progress in the Americas,” Pediatric Infectious Disease Journal, vol. 10, no. 3, pp. 222–229, 1991.
[24]
M. Ramsay, N. Gay, E. Miller et al., “The epidemiology of measles in England and Wales: rationale for the 1994 national vaccination campaign,” Communicable Disease Report, vol. 4, no. 12, pp. R141–R146, 1994.
[25]
P. Yongzhen, L. Shuping, L. Changguo, and S. Chen, “The effect of constant and pulse vaccination on an SIR epidemic model with infectious period,” Applied Mathematical Modelling, vol. 35, no. 8, pp. 3866–3878, 2011.
[26]
J. Hale, Theory of Functional Differential Equations, Springer, Heidelberg, Germany, 1977.
[27]
Y. Kuang, Delay Differential Equation with Application in Population Dynamics, Academic Press, NewYork, NY, USA, 1993.
[28]
Y. N. Xiao and L. S. Chen, “Modeling and analysis of a predator-prey model with disease in the prey,” Mathematical Biosciences, vol. 171, no. 1, pp. 59–82, 2001.
[29]
V. Lakshmikantham, D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.