The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique. 1. Introduction The progress in the forward and inverse modeling in Electrical Encephalography (EEG) and Magnetoencephalography (MEG) source localization as well as in Electrical Impedance Tomography (EIT) depends on efficiency and accuracy of the employed forward solvers for the governing partial differential equations (PDE), in particular, the Poisson equations, describing the electrical potential distribution in highly heterogeneous and anisotropic human head tissues. The modern forward solvers use the variety of computational approaches based on the finite difference (FD), boundary element (BE), and finite element (FE) methods [1–9], multigrid [10] and preconditioned Conjugate Gradient- (CG-) type iterative methods [11–15], and also high performance parallel computing techniques [16–22]. To describe the electrical conductivity in heterogeneous biological media with arbitrary geometry, the method of embedded boundaries or a fictitious domain can be used [23, 24]. In this method, an arbitrarily shaped object of interest is embedded into a rectangular computational domain with extremely low conductivity values in the external complimentary regions modeling the surrounding air. This effectively guarantees that there are no current flows out of the physical area and implicitly sets up the zero flux Neumann boundary condition on the surface of the object. This setup retains the advantages of the finite-difference method (FDM), which is most prominent in the rectangular domain. Previously, we built an iterative finite-difference forward problem solver for an isotropic version of the
References
[1]
S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems, vol. 15, no. 2, pp. R41–R49, 1999.
[2]
R. Gulrajani, Bioelectricity and Biomagnetism, John Wiley & Sons, New York, NY, USA, 1998.
[3]
H. Hallez, B. Vanrumste, R. Grech et al., “Review on solving the forward problem in EEG source analysis,” Journal of NeuroEngineering and Rehabilitation, vol. 4, article 46, 2007.
[4]
J.-F. P. J. Abascal, S. R. Arridge, W. R. B. Lionheart, R. H. Bayford, and D. S. Holder, “Validation of a finite-element solution for electrical impedance tomography in an anisotropic medium,” Physiological Measurement, vol. 28, no. 7, pp. S129–S140, 2007.
[5]
C. H. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. A. Koch, and R. S. MacLeod, “Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling,” NeuroImage, vol. 30, no. 3, pp. 813–826, 2006.
[6]
R. Bashar, Y. Li, and P. Wen, “Influence of white matter inhomogeneous anisotropy on EEG forward computing,” Australasian Physical and Engineering Sciences in Medicine, vol. 31, no. 2, pp. 122–130, 2008.
[7]
W. H. Lee, Z. Liu, B. A. Mueller, K. Lim, and B. He, “Influence of white matter anisotropic conductivity on EEG source localization: comparison to fMRI in human primary visual cortex,” Clinical Neurophysiology, vol. 120, no. 12, pp. 2071–2081, 2009.
[8]
T. de Marco, F. Ries, M. Guermandi, and R. Guerrieri, “EIT forward problem parallel simulation environment with anisotropic tissue and realistic electrode models,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 5, pp. 1229–1239, 2012.
[9]
C. G. Bénar and J. Gotman, “Modeling of post-surgical brain and skull defects in the EEG inverse problem with the boundary element method,” Clinical Neurophysiology, vol. 113, no. 1, pp. 48–56, 2002.
[10]
W. Hackbusch, Multi-Grid Methods and Applications, vol. 4, Springer, Berlin, Germany, 1985.
[11]
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, The Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, New York, NY, USA, 2nd edition, 1992.
[12]
L. A. Hageman and D. M. Young, Applied Iterative Methods, Academic Press, New York, NY, USA, 1981.
[13]
R. Barrett, M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, Pa, USA, 1994.
[14]
H. A. van der Vorst, “BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing, vol. 13, no. 2, pp. 631–644, 1992.
[15]
M. Mohr and B. Vanrumste, “Comparing iterative solvers for linear systems associated with the finite difference discretisation of the forward problem in electro-encephalographic source analysis,” Medical and Biological Engineering and Computing, vol. 41, no. 1, pp. 75–84, 2003.
[16]
V. M. Volkov, A. A. Zherdetskij, S. I. Turovets, and A. D. Malony, “A fast BiCG solver for the isotropic Poisson equation in the forward EIT problem in cylinder phantoms,” Journal of Physics: Conference Series, vol. 224, no. 1, Article ID 012153, 2010.
General-purpose computation using graphics hardware, http://gpgpu.org/.
[19]
A. Salman, S. Turovets, A. Malony, and V. Volkov, “Multi-cluster, mixed-mode computational modeling of human head conductivity,” in OpenMP Shared Memory Parallel Programming, vol. 4315 of Lecture Notes in Computer Science, pp. 119–130, Springer, Berlin, Germany, 2008.
[20]
V. Volkov, A. Zherdetsky, S. Turovets, and A. Malony, “A 3D vector-additive iterative solver for the anisotropic inhomogeneous poisson equation in the forward EEG problem,” in Computational Science—ICCS 2009, vol. 5544 of Lecture Notes in Computer Science, pp. 511–520, Springer, Berlin, Germany, 2009.
[21]
D. Ozog, A. Salman, A. Malony, S. Turovets, V. Volkov, and D. Tucker, “Next-generation human brain neuroimaging and the role of high-performance computing,” in Proceedings of the High Performance Computing & Simulation Conference (HPCS '13), Helsinki, Finland, July 2013.
[22]
D. N. Barnes, J. S. George, and K. T. Ng, “Finite difference iterative solvers for electroencephalography: serial and parallel performance analysis,” Medical & Biological Engineering & Computing, vol. 46, no. 9, pp. 901–910, 2008.
[23]
R. Glowinski, T.-W. Pan, and J. Periaux, “A fictitious domain method for Dirichlet problem and applications,” Computer Methods in Applied Mechanics and Engineering, vol. 111, no. 3-4, pp. 283–303, 1994.
[24]
V. K. Saul'ev, “On the solution of some boundary value problems on high performance computers by fictitious domain method,” Siberian Mathematical Journal, vol. 4, no. 4, pp. 912–925, 1963 (Russian).
[25]
A. A. Samarskii and A. V. Gulin, Numerical Methods of Mathematical Physics, Nauchnyi Mir, Moscow, Russia, 2000 (Russian).
[26]
V. N. Abrashin, A. A. Egorov, and N. G. Zhadaeva, “On a class of additive iterative methods,” Differential Equations, vol. 37, no. 12, pp. 1751–1760, 2001.
[27]
P.-Y. Bondiau, O. Clatz, M. Sermesant et al., “Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging,” Physics in Medicine and Biology, vol. 53, no. 4, pp. 879–893, 2008.
[28]
C. Qin, N. Kang, and N. Cao, “Performance evaluation of anisotropic diffusion simulation based tractography on phantom images,” in Proceedings of the 45th Annual ACM Southeast Conference (ACMSE '07), pp. 521–522, Winston-Salem, NC, USA, July 2007.
[29]
J. C. de Munck and M. J. Peters, “A fast method to compute the potential in the multisphere model,” IEEE Transactions on Biomedical Engineering, vol. 40, no. 11, pp. 1166–1174, 1993.
[30]
T. C. Ferree, K. J. Eriksen, and D. M. Tucker, “Regional head tissue conductivity estimation for improved EEG analysis,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 12, pp. 1584–1592, 2000.
[31]
T. F. Oostendorp, J. Delbeke, and D. F. Stegeman, “The conductivity of the human skull: results of in vivo and in vitro measurements,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 11, pp. 1487–1492, 2000.
[32]
S. I. Gon?alves, J. C. de Munck, J. P. A. Verbunt, F. Bijma, R. M. Heethaar, and F. Lopes da Silva, “In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 6, pp. 754–767, 2003.
[33]
Y. Zhang, W. van Drongelen, and B. He, “Estimation of in vivo brain-to-skull conductivity ratio in humans,” Applied Physics Letters, vol. 89, no. 22, Article ID 223903, 3 pages, 2006.
[34]
S. Rush and D. A. Driscoll, “EEG electrode sensitivity—an application of reciprocity,” IEEE Transactions on Biomedical Engineering, vol. 16, no. 1, pp. 15–22, 1969.
[35]
S. Rush and D. A. Driscoll, “Current distribution in the brain from surface electrodes,” Anesthesia and Analgesia, vol. 47, no. 6, pp. 717–723, 1968.
[36]
L. R. Frank, “Characterization of anisotropy in high angular resolution diffusion-weighted MRI,” Magnetic Resonance in Medicine, vol. 47, no. 6, pp. 1083–1099, 2002.
[37]
K. Li, Neuroanatomical segmentation in MRI exploiting a priori knowledge [Ph.D. thesis], Department of Computer and Information Science, University of Oregon, 2007.
[38]
K. Li, A. D. Malony, and D. M. Tucker, “Image segmentation method,” US8478011 B2, 2006.
[39]
http://teem.sourceforge.net/.
[40]
D. K. Hammond, B. Scherrer, and A. Maloney, “Incorporating anatomical connectivity into EEG source estimation via sparse approximation with cortical graph wavelets,” in Proceedings of the IEEE International Conference on Acoustics, Signals and Signal Processing (ICASSP '12), Kyoto, Japan, March 2012.
[41]
D. K. Hammond, B. Scherrer, and S. K. Warfield, “Cortical graph smoothing: a novel method for exploiting DWI-derived anatomical brain connectivity to improve EEG source estimation,” IEEE Transactions on Medical Imaging, vol. 32, no. 10, pp. 1952–1963, 2013.
[42]
D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank, “PET-CT image registration in the chest using free-form deformations,” IEEE Transactions on Medical Imaging, vol. 22, no. 1, pp. 120–128, 2003.
[43]
F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Transactions on Medical Imaging, vol. 16, no. 2, pp. 187–198, 1997.
[44]
V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Log-Euclidean metrics for fast and simple calculus on diffusion tensors,” Magnetic Resonance in Medicine, vol. 56, no. 2, pp. 411–421, 2006.
[45]
R. Eymard, T. Gallou?t, and R. Herbin, “Finite volume methods,” Handbook of Numerical Analysis, vol. 7, pp. 713–1018, 2000.
[46]
I. V. Rybak, “Monotone and conservative difference schemes for elliptic equations with mixed derivatives 1,” Mathematical Modelling and Analysis, vol. 9, no. 2, pp. 169–178, 2004.
[47]
H. S. Suh, W. H. Lee, and T.-S. Kim, “Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model,” Physics in Medicine and Biology, vol. 57, no. 21, pp. 6961–6980, 2012.
[48]
S. Shahid, P. Wen, and T. Ahfock, “Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS,” Computer Methods and Programs in Biomedicine, vol. 109, no. 1, pp. 48–64, 2012.