A New Validated Stability Indicating RP-HPLC Method for Simultaneous Estimation of Pyridoxine Hydrochloride and Meclizine Hydrochloride in Pharmaceutical Solid Dosage Forms
A simple, specific, accurate, precise stability indicating reversed-phase high-performance liquid chromatographic (RP-HPLC) method was developed and validated for the simultaneous determination of pyridoxine hydrochloride (PYH) and meclizine hydrochloride (MEH). An isocratic separation of PYH and MEH were achieved on C 18, 250 × 4.6?mm ID, 5?μm particle size columns at column oven temperature 37°C with a flow rate of 0.5?mL?min?1 and using a diode array detector to monitor the detection at 254?nm. The mobile phase consisted of buffer?:?acetonitrile?:?trifluoroacetic acid at a ratio of 30?:?70?:?0.1?(v/v). The retention times of PYH and MEH was found to be 5.25 and 10.14?min, respectively. Suitability, specificity, linearity, accuracy, precision, stability, and sensitivity of this method for the quantitative determination of the drugs were proved by validation in accordance with the requirements laid down by International Conference on Harmonization (ICH) Q2 (R1) guidelines. The proposed method is reliable and robust and can be used as quality control tool for the estimation of these drugs in combined pharmaceutical solid dosage forms. 1. Introduction Pyridoxine hydrochloride (PYH) is chemically 3, 4-pyridinediacetonitrile, 5-hydroxy-6-methyl, hydrochloride (Figure 1). It is a water-soluble vitamin and involved principally in amino acid, carbohydrate, and fat metabolism [1]. It is also required for the formation of hemoglobin [2]. Meclizine hydrochloride (MEH) (Figure 2) is often used as “meclozine” which is chemically 1-[(4-Chlorophenyl)(phenyl)methyl]-4-(3-methylbenzyl)piperazine, dihydrochloride monohydrate, a first-generation antihistamine of the piperazine class. Meclizine is effective in inhibiting the symptoms of motion sickness, such as nausea, vomiting, and dizziness. PYH is official in IP [3], BP [4, 5], and USP [6], and MEH is also official in BP [4, 5] and USP [6]. The pharmacopeias describe potentiometric, spectrophotometrics and HPLC method for the determination of PYH and MEH individually from the bulk and tablet dosage form. No reversed-phase high-performance liquid chromatography (RP-HPLC) method is reported in pharmacopeias for the simultaneous estimation of PYH and MEH from their combined formulation, though there are various methods for the determination of PYH and MEH by spectrophotometric [7–12], voltammetric [13], HPLC [14–16], electrophoresis [17], GLC [18], HPTLC [19], and TLC [20] methods in different pharmaceutical dosages forms. The present work describes the development and validation of stability indicating RP-HPLC method,
References
[1]
A. Pathak and S. J. Rajput, “Simultaneous derivative spectrophotometric analysis of doxylamine succinate, pyridoxine hydrochloride and folic acid in combined dosage forms,” The Indian Journal of Pharmaceutical Sciences, vol. 70, no. 4, pp. 513–517, 2008.
[2]
J. E. Reynolds, The Extra Pharmacopoeia, Martindale, The Pharmaceutical Press, London, UK, 1996.
[3]
Indian Pharmacopoeia, vol. 2, Government of India, The Controller of Publications, New Delhi, India, 1996.
[4]
British Pharmacopoeia, vol. 3, British Pharmacopoeia Commission, The Stationery Office, London, UK, 2012.
[5]
British Pharmacopoeia, vol. 2, British Pharmacopoeia Commission, The Stationery Office, London, UK, 2012.
[6]
The United States Pharmacopoeia, 35, NF 30, vol. 3, United States Pharmacopeial Convention, Rockville, Md, USA, 2011.
[7]
M. S. Arayne, N. Sultana, F. A. Siddiqui, M. H. Zuberi, and A. Z. Mirza, “Spectrophotometric methods for the simultaneous analysis of meclezine hydrochloride and pyridoxine hydrochloride in bulk drug and pharmaceutical formulations,” Pakistan journal of pharmaceutical sciences, vol. 20, no. 2, pp. 149–156, 2007.
[8]
H. H. Abdine, A. A. Gazy, and M. H. Abdel-Hay, “Simultaneous determination of melatonin-pyridoxine combination in tablets by zero-crossing derivative spectrophotometry and spectrofluorimetry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 17, no. 3, pp. 379–386, 1998.
[9]
S. B. Bari and S. G. Kashedikar, “Simultaneous estimation of meclozine hydrochloride and nicotinic acid in combined dosage form by spectrophotometry,” Indian Drugs, vol. 33, no. 8, pp. 411–414, 1996.
[10]
J. G. Portela, A. C. S. Costa, and L. S. G. Teixeira, “Determination of Vitamin B6 in pharmaceutical formulations by flow injection-solid phase spectrophotometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 34, no. 3, pp. 543–549, 2004.
[11]
C. S. Suresh, C. S. Satish, R. C. Saxena, and K. T. Santosh, “Simultaneous spectrophotometric analysis of a ternarymixture of pharmaceuticals-assay for meclozine hydrochloride, pyridoxine hydrochloride and caffeine,” Journal of Pharmaceutical and Biomedical Analysis, vol. 7, no. 3, pp. 321–327, 1989.
[12]
S. B. Bari and S. G. Kaskhedikar, “Simultaneous estimation of meclozine hydrochloride and caffeine in solid dosage form by employing multicomponent and derivative spectrophotometry,” Indian Drugs, vol. 34, no. 2, pp. 85–88, 1997.
[13]
B. Habibi, H. Phezhhan, and M. H. Pournaghi-Azar, “Voltammetric determination of vitamin B6 (pyridoxine) using multi wall carbon nanotube modified carbon-ceramic electrode,” Journal of the Iranian Chemical Society, vol. 7, supplement, pp. S103–S112, 2010.
[14]
A. P. Argekar and J. G. Sawant, “Simultaneous determination of pyridoxine hydrochloride and doxylamine succinate from tablets by ion pair reversed-phase high-performance liquid chromatography (RP-HPLC),” Drug Development and Industrial Pharmacy, vol. 25, no. 8, pp. 945–950, 1999.
[15]
E. S. Tee and S. C. Khor, “Simultaneous determination of B-vitamins and ascorbic acid in multi-vitamin preparations by reversed-phase HPLC,” Malaysian Journal of Nutrition, vol. 2, no. 2, pp. 176–194, 1996.
[16]
M. S. Arayne, N. Sultana, and F. A. Siddiqui, “Simultaneous determination of pyridoxine, meclizine and buclizine in dosage formulations and human serum by RP-LC,” Chromatographia, vol. 67, no. 11-12, pp. 941–945, 2008.
[17]
M. E. Capella-Peiró, A. Bossi, and J. Esteve-Romero, “Optimization by factorial design of a capillary zone electrophoresis method for the simultaneous separation of antihistamines,” Analytical Biochemistry, vol. 352, no. 1, pp. 41–49, 2006.
[18]
C. K. Wong, J. R. Urbigkit, and N. Conca, “GLC determination of meclizine hydrochloride in tablet formulations,” Journal of Pharmaceutical Sciences, vol. 62, no. 8, pp. 1340–1342, 1973.
[19]
A. P. Argekar and J. G. Sawant, “Simultaneous determination of pyridoxine hydrochloride and doxylamine succinate in tablets by HPTLC,” Journal of Liquid Chromatography and Related Technologies, vol. 22, no. 13, pp. 2051–2060, 1999.
[20]
D. Widiretnani, S. I. Wahyuni, F. Kartinasari, and G. Indrayanto, “Simultaneous determination of pyrathiazine theoclate and pyridoxine HCl by TLC-densitometry in commercial tablets: validation of the method,” Journal of Liquid Chromatography and Related Technologies, vol. 32, no. 1, pp. 154–165, 2009.
[21]
ICH, Validation of Analytical Procedures: Text and Methodology Q2 (R1), Geneva, Switzerland, 1996.