This paper introduces a novel algorithm for radial distribution networks reconfiguration, called “Sifting algorithm.” It not only has a simple structure but also has high speed and accuracy. It works by eliminating infeasible states and reduces the search space and then it uses a simple method to find optimum answer in remaining space. To ensure the effectiveness of this algorithm, a 16-switch test network was tested and the results were compared with three other well-known algorithms. The results of simulations showed high speed and accuracy of this algorithm. 1. Introduction Due to daily growth of electrical energy consumers and available limitations of generation and transmission of energy, distribution systems are often operating under overload conditions. The statistical results showed that majority of interruptions of energy come from distribution systems. For this reason these systems are taken in consideration recently. Some of the most important objectives for optimization include reducing, total losses of system (due to economic attractiveness), improving reliability of system (due to reduce faults) and improving voltage profile (due to consumers satisfaction). Optimization of these systems is done by a usual method that is called “reconfiguration” or “restructuring.” Reconfiguration will change structure of the network by changing status of its switches. These switches can be divided into two categories including sectionalizing (normally close) switches and tie (normally open) switches [1]. In fact for changing structure of the network, the switches states should be changed. Since the most distribution networks all over the world are radial, there are some specific limitations for them. Some of these limitations include maintaining radial structure, establishing load balancing, not overloading equipment and, and so forth [2]. The other work of reconfiguration is introduction of switching scenarios of the network. It will help operators to take the best decision in a minimum time. It minimizes human faults and does not need to shut down the system too [3]. The most important data for reconfiguration include load consummation patterns and data of system. Usually, it is assumed that loads are constant, but sometimes they are taken into consideration as probabilistic. To obtain this information such systems like Customer Information Systems (CIS) and Outage Management Information System (OMIS) can be used [4]. Reconfiguration can be done automatically in the smart networks (3G). In these networks the status of system is observable online and
References
[1]
B. Amanulla, S. Chakrabarti, and S. N. Singh, “Reconfiguration of power distribution systems considering reliability and power loss,” IEEE Transactions on Power Delivery, vol. 27, no. 2, pp. 918–926, 2012.
[2]
M. W. Siti, D. V. Nicolae, A. A. Jimoh, and A. Ukil, “Reconfiguration and load balancing in the LV and MV distribution networks for optimal performance,” IEEE Transactions on Power Delivery, vol. 22, no. 4, pp. 2534–2540, 2007.
[3]
Y.-K. Wu, C.-Y. Lee, L.-C. Liu, and S.-H. Tsai, “Study of reconfiguration for the distribution system with distributed generators,” IEEE Transactions on Power Delivery, vol. 25, no. 3, pp. 1678–1685, 2010.
[4]
L. S. M. Guedes, A. C. Lisboa, D. A. G. Vieira, and R. R. Saldanha, “A multiobjective heuristic for reconfiguration of the electrical radial network,” IEEE Transaction on Power Delivery, vol. 28, pp. 311–319, 2013.
[5]
Y.-L. Ke, “Distribution feeder reconfiguration for load balancing and service restoration by using G-Nets inference mechanism,” IEEE Transactions on Power Delivery, vol. 19, no. 3, pp. 1426–1433, 2004.
[6]
V. Spitsa, X. Ran, R. Salcedo et al., “On the transient behavior of large-scale distribution networks during automatic feeder reconfiguration,” IEEE Transaction on Smart Grid, vol. 3, pp. 887–896, 2012.
[7]
H. D. De Macedo Braz and B. A. de Souza, “Distribution network reconfiguration using genetic algorithms with sequential encoding: subtractive and additive approaches,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 582–593, 2011.
[8]
A. Saffar, R. Hooshmand, and A. Khodabakhshian, “A new fuzzy optimal reconfiguration of distribution systems for loss reduction and load balancing using ant colony search-based algorithm,” Applied Soft Computing Journal, vol. 11, no. 5, pp. 4021–4028, 2011.
[9]
J. Olamaei, T. Niknam, and S. B. Arefi, “Distribution feeder reconfiguration for loss minimization based on modified honey bee mating optimization algorithm,” in Proceedings of the 2nd International Conference on Advances in Energy Engineering, pp. 304–311, December 2011.
[10]
V. Parada, J. A. Ferland, M. Arias, and K. Daniels, “Optimization of electrical distribution feeders using simulated annealing,” IEEE Transactions on Power Delivery, vol. 19, no. 3, pp. 1135–1141, 2004.
[11]
A. Y. Abdelaziz, F. M. Mohamed, S. F. Mekhamer, and M. A. L. Badr, “Distribution system reconfiguration using a modified Tabu Search algorithm,” Electric Power Systems Research, vol. 80, no. 8, pp. 943–953, 2010.
[12]
H.-T. Yang, Y.-T. Tzeng, and M.-S. Tsai, “Loss-minimized distribution system reconfiguration by using improved multi-agent based particle swarm optimization,” in Proceedings of the Asia-Pacific Power and Energy Engineering Conference (APPEEC '10), March 2010.
[13]
B. Amanulla, S. Chakrabarti, and S. N. Singh, “Reconfiguration of power distribution systems using probabilistic reliability models,” in Proceedings of the IEEE PES General Meeting: The Electrification of Transportation and the Grid of the Future, July 2011.
[14]
F.-Y. Hsu and M.-S. Tsai, “A multi-objective evolution programming method for feeder reconfiguration of power distribution system,” in Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems (ISAP '05), pp. 55–60, November 2005.
[15]
Y. Qin and J. Wang, “Distribution network reconfiguration based on particle clonal genetic algorithm,” Journal of Computers, vol. 4, no. 9, pp. 813–820, 2009.
[16]
M. S. Tsai and W. C. Wu, “A novel binary coding particle swarm optimization for feeder reconfiguration,” in Particle Swarm Optimization, A. Lazinica, Ed., chapter 27, 2009.
[17]
C.-T. Su, C.-F. Chang, and J.-P. Chiou, “Distribution network reconfiguration for loss reduction by ant colony search algorithm,” Electric Power Systems Research, vol. 75, no. 2-3, pp. 190–199, 2005.