Quantum-dot cellular automata (QCA) suggest an emerging computing paradigm for nanotechnology. The QCA offers novel approach in electronics for information processing and communication. QCA have recently become the focus of interest in the field of low power nanocomputing and nanotechnology. The fundamental logic elements of this technology are the majority voter (MV) and the inverter (INV). This paper presents a novel design with less garbage output and minimum quantum cost in nanotechnology. In the paper we show how to create multipurpose reversible gates. By development of suitable gates in logic circuits as an example, we can combine MFA and HS in one design using CMVMIN gate. We offer CMVMIN gate implementations to be used in multipurpose circuit. We can produce concurrent half adder/subtractor and one bit comparator in one design using reversible logic gates and CMVMIN gates. Also, a decoder from recent architecture has been shown independently. We investigate the result of the proposed design using truth table. A significant improvement in quality of the calculated parameters and variety of required outputs has been achieved. 1. Introduction This heat dissipation extremely reduces the performance and lifetime of the circuits. The solution is to use revolutionary technology which enables extremely low power consumption and heat waste in computing [1]. Reversible logic gates are extensively known to be compatible with future computing technologies which approximately dissipate zero heat [2]. Reversible are the circuits or the gates that have the same number of inputs and outputs and have one-to-one mappings between vectors of inputs and outputs; thus, the vector of the input states can be uniquely reconstructed from the vector of the output states [3]. The QCA (Quantum-dot cellular automata) are considered to be the promising technology for future generation ICs that overcome the limitations of CMOS. The fundamental unit of QCA based design is the 3-input majority gate (majority voter, MV) and the inverter. The wide acceptance of QCA in logic design attracts researchers to explore new universal gate structures targeting cost effective realization [4]. Existing synthesis tools do not make efficient use of MV in technology mapping for synthesis of logic designs. Even for arithmetic circuits, in which there should be perfect matches for the MV, the synthesis tools rarely find any matches [5]. This satisfies the requirement of optimum logic gates as well as minimum number of garbage outputs in an energy efficient design [6]. We illustrate CMVMIN gate
References
[1]
B. Dehghan, “Design of asynchronous sequential circuits using reversible logic gates,” , International Journal of Engineering and Technology, vol. 4, no. 4, pp. 213–219, 2012.
[2]
B. Dehghan, “Survey the inverse property of quantum gates for concurrent error detection,” Journal of Basic and Applied Scientific Research, vol. 3, no. 2, pp. 603–608, 2013.
[3]
P. K. Bhattacharjee, “Use of symmetric functions designed by QCA gates for next generation IC,” International Journal of Computer Theory and Engineering, vol. 2, no. 2, pp. 211–217, 2010.
[4]
M. Dalui, B. Sen, and B. K. Sikdar, “Fault tolerant QCA logic design with coupled majority-minority gate,” International Journal of Computer Applications, vol. 1, no. 29, pp. 81–87, 2010.
[5]
M. Momenzadeh, J. Huang, M. B. Tahoori, and F. Lombardi, “Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 12, pp. 1881–1892, 2005.
[6]
B. Sen, T. Adak, A. S. Anand, and B. K. Sikdar, “Synthesis of reversible universal QCA gate structure for energy efficient digital design,” in Proceedings of the IEEE Region 10 Conference: Trends and Development in Converging Technology Towards 2020, pp. 806–810, November 2011.
[7]
B. Dehghan, “Generating new reversible logic gates with ladder block structure for emerging nanocircuits,” Journal of Basic and Applied Scientific Research, vol. 3, no. 1, pp. 610–615, 2013.
[8]
M. S. Islam, M. M. Rahman, Z. Begum, M. Z. Hafiz, and A. Al Mahmud, “Synthesis of fault tolerant reversible logic circuits,” in Proceedings of the IEEE International Conference on Circuits and Systems, April 2009, http://arxiv.org/ftp/arxiv/papers/1008/1008.3340.pdf.
[9]
X. S. Christina and M. S. Justine, “Realization of BCD adder using reversible logic,” International Journal of Computer Theory and Engineering, vol. 2, no. 3, pp. 333–337, 2010.
[10]
H. Thapliyal and N. Ranganathan, “Conservative QCA gate (CQCA) for designing concurrently testable molecular QCA circuits,” in Proceedings of the 22nd International Conference on VLSI Design, pp. 511–516, January 2009.
[11]
R. Zhou, X. Xia, F. Wang, Y. Shi, and H. Liaoa, “Logic circuit design of 2-4 decoder using quantum cellular automata,” Journal of Computational Information Systems, vol. 8, no. 8, pp. 3463–3469, 2012.
[12]
S. Ditti, K. Mahata, P. Mitra, and B. K. Sikdar, “Defect characterization in coupled majority-minority QCA gate,” in Proceedings of the 4th International Conference on Design & Technology of Integrated Systems in Nanoscal Era, pp. 293–298, IEEE, April 2009.
[13]
B. Dehghan, “Characterization and logic synthesis of URG gate for designing multipurpose circuits,” European Journal of Scientific Research, vol. 105, no. 1, pp. 117–125, 2013.
[14]
B. Dehghan and A. A. Baziar, “Optimized methodology for realization of logic circuits using QCA gates,” International Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, no. 3, pp. 58–61, 2013.
[15]
Y.-T. Pai and Y.-K. Chen, “The fastest carry lookahead adder,” in Proceedings of the 2nd IEEE International Workshop on Electronic Design, Test and Applications, pp. 434–436, January 2004.