全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improvement of Processing Speed in Executive Function Immediately following an Increase in Cardiovascular Activity

DOI: 10.1155/2013/212767

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aims to identify the acute effects of physical exercise on specific cognitive functions immediately following an increase in cardiovascular activity. Stair-climbing exercise is used to increase the cardiovascular output of human subjects. The color-naming Stroop Test was used to identify the cognitive improvements in executive function with respect to processing speed and error rate. The study compared the Stroop results before and immediately after exercise and before and after nonexercise, as a control. The results show that there is a significant increase in processing speed and a reduction in errors immediately after less than 30?min of aerobic exercise. The improvements are greater for the incongruent than for the congruent color tests. This suggests that physical exercise induces a better performance in a task that requires resolving conflict (or interference) than a task that does not. There is no significant improvement for the nonexercise control trials. This demonstrates that an increase in cardiovascular activity has significant acute effects on improving the executive function that requires conflict resolution (for the incongruent color tests) immediately following aerobic exercise more than similar executive functions that do not require conflict resolution or involve the attention-inhibition process (for the congruent color tests). 1. Introduction Physical exercise is known to improve brain functions based on a large body of evidence, ranging from the improvement in academic performance in children to the improvement in cognitive function in both healthy subjects and patients with mental disorders. Numerous studies have shown that exercise is linked to an improvement in academic achievement for schoolchildren [1–5]. The improvement in academic performance is greater for physically fit children than for obese children [6]. Exercise has shown to improve brain processing speed by decreasing the event-related brain potential P300 in healthy subjects with sedentary lifestyles [7]. Brain imaging studies also showed that exercise improves cognitive functions by altering the efficiency of the neural circuitry based on functional magnetic imaging (fMRI) data, especially for overweight children [8]. Physical activities can improve memory and cognitive impairment in Alzheimer’s patients and motor functions in Parkinson’s patients. It improves the logical memory and reduces the whole brain cortical atrophy in older adults with mild cognitive impairment (MCI) [9]. Treadmill exercise has been shown to enhance memory plasticity function in

References

[1]  L. J. B. Hill, J. H. G. Williams, L. Aucott, J. Thomson, and M. Mon-Williams, “How does exercise benefit performance on cognitive tests in primary-school pupils?” Developmental Medicine and Child Neurology, vol. 53, no. 7, pp. 630–635, 2011.
[2]  J. E. Donnelly and K. Lambourne, “Classroom-based physical activity, cognition, and academic achievement,” Preventive Medicine, vol. 52, supplement 1, pp. S36–S42, 2011.
[3]  J. Morales, M. Pellicer-Chenoll, X. García-Massó, M. Gomis, and L.-M. González, “Relation between physical activity and academic performance in 3rd-year secondary education students,” Perceptual and Motor Skills, vol. 113, no. 2, pp. 539–546, 2011.
[4]  H. J. Syvaoja, M. T. Kantomaa, T. Ahonen, H. Hakonen, A. Kankaanpaa, and T. H. Tammelin, “Physical activity, sedentary behavior, and academic performance in Finnish Children,” Medicine and Science in Sports and Exercise, 2013.
[5]  R. A. Wittberg, K. L. Northrup, and L. A. Cottrell, “Children's aerobic fitness and academic achievement: a longitudinal examination of students during their fifth and seventh grade years,” American Journal of Public Health, vol. 102, no. 12, pp. 2303–2307, 2012.
[6]  R. A. London and S. Castrechini, “A longitudinal examination of the link between youth physical fitness and academic achievement,” Journal of School Health, vol. 81, no. 7, pp. 400–408, 2011.
[7]  N. Kumar, M. Singh, S. Sood, et al., “Effect of acute moderate exercise on cognitive P300 in persons having sedentary lifestyles,” International Journal of Applied and Basic Medical Research, vol. 2, no. 1, pp. 67–69, 2012.
[8]  C. E. Krafft, N. F. Schwarz, L. Chi, et al., “An eight month randomized controlled exercise trial alters brain activation during cognitive tasks in overweight children,” Obesity, 2013.
[9]  S. Balsamo, J. M. Willardson, S. Frederico, et al., “Effectiveness of exercise on cognitive impairment and Alzheimer's disease,” International Journal of General Medicine, vol. 6, pp. 387–391, 2013.
[10]  T. Suzuki, H. Shimada, H. Makizako, et al., “A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment,” PLoS One, vol. 8, no. 4, Article ID e61483, 2013.
[11]  Z. H. Fang, C. H. Lee, M. K. Seo, et al., “Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats,” Neuroscience Research, vol. 76, no. 4, pp. 187–194, 2013.
[12]  S. Mojtahedi, M. R. Kordi, S. E. Hosseini, S. F. Omran, and M. Soleimani, “Effect of treadmill running on the expression of genes that are involved in neuronal differentiation in the hippocampus of adult male rats,” Cell Biology International, 2012.
[13]  E. B. Beall, M. J. Lowe, J. L. Alberts, et al., “The effect of forced-exercise therapy for Parkinson's disease on motor cortex functional connectivity,” Brain Connect, vol. 3, pp. 190–198, 2013.
[14]  P. J. Smith, J. A. Blumenthal, B. M. Hoffman et al., “Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials,” Psychosomatic Medicine, vol. 72, no. 3, pp. 239–252, 2010.
[15]  T. W. Robbins, “Dissociating executive functions of the prefrontal cortex,” Philosophical Transactions of the Royal Society B, vol. 351, pp. 1463–1470, 1996.
[16]  G. O'Malley, “Aerobic exercise enhances executive function and academic achievement in sedentary, overweight children aged 7–11 years,” Journal of Physiotherapy, vol. 57, no. 4, p. 255, 2011.
[17]  C. L. Davis, P. D. Tomporowski, J. E. McDowell et al., “Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial,” Health Psychology, vol. 30, no. 1, pp. 91–98, 2011.
[18]  B. Rattray and D. Smee, “Exercise improves reaction time without compromising accuracy in a novel easy-to-administer tablet-based cognitive task,” Journal of Science and Medicine in Sport, 2013.
[19]  Y. K. Chang, S. Liu, H. H. Yu, and Y. H. Lee, “Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder,” Archives of Clinical Neuropsychology, vol. 27, pp. 225–237, 2012.
[20]  S. J. Lucas, P. N. Ainslie, C. J. Murrell, K. N. Thomas, E. A. Franz, and J. D. Cotter, “Effect of age on exercise-induced alterations in cognitive executive function: relationship to cerebral perfusion,” Experimental Gerontology, vol. 47, pp. 541–551, 2012.
[21]  J. R. Stroop, “Factors affecting speed in serial verbal reactions,” Psychological Monographs: General and Applied, vol. 50, pp. 38–48, 1938.
[22]  A. R. Jensen and W. D. Rohwer Jr., “The stroop color-word test: a review,” Acta Psychologica, vol. 25, pp. 36–93, 1966.
[23]  J. R. Stroop, “Studies of interference in serial verbal reactions,” Journal of Experimental Psychology, vol. 18, no. 6, pp. 643–662, 1935.
[24]  C. R. Alves, B. Gualano, P. P. Takao, et al., “Effects of acute physical exercise on executive functions: a comparison between aerobic and strength exercise,” Journal of Sport & Exercise Psychology, vol. 34, no. 4, pp. 539–549, 2012.
[25]  J. R. Best, “Exergaming immediately enhances children's executive function,” Developmental Psychology, vol. 48, no. 5, pp. 1501–1510, 2012.
[26]  M. R. Rueda, J. Fan, B. D. McCandliss et al., “Development of attentional networks in childhood,” Neuropsychologia, vol. 42, no. 8, pp. 1029–1040, 2004.
[27]  M. R. Rueda, M. I. Posner, M. K. Rothbart, and C. P. Davis-Stober, “Development of the time course for processing conflict: an event-related potentials study with 4 year olds and adults,” BMC Neuroscience, vol. 5, article 39, 2004.
[28]  F. Huertas, J. Zahonero, D. Sanabria, and J. Lupiá?, “Functioning of the attentional networks at rest vs. during acute bouts of aerobic exercise,” Journal of Sport and Exercise Psychology, vol. 33, no. 5, pp. 649–665, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133