全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cognitive Performance following Carotid Endarterectomy or Stenting in Asymptomatic Patients with Severe ICA Stenosis

DOI: 10.1155/2013/342571

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Endarterectomy (CEA) or stenting (CAS) of a stenotic carotid artery is currently undertaken to reduce stroke risk. In addition removal of the arterial narrowing has been hypothesized to improve cerebral hemodynamics and provide benefits in cognitive functions, by supposedly resolving a “hypoperfusion” condition. Methods. In this study we sought to test whether resolution of a carotid stenosis is followed by measurable changes in cognitive functions in 22 subjects with “asymptomatic” stenosis. Results. A main finding of the study was the statistically significant pre-post difference observed in the performance of phonological verbal fluency and Rey’s 15-word immediate recall. Remarkably, there was a significant interaction between phonological verbal fluency performance and side of the carotid intervention, as the improvement in the verbal performance, a typical “lateralized” skill, was associated with resolution of the left carotid stenosis. Conclusion. The results reflect a substantial equivalence of the overall performance at the before- and after- CEA or CAS tests. In two domains, however, the postintervention performance resulted improved. The findings support the hypothesis that recanalization of a stenotic carotid could improve brain functions by resolving hypothetical “hypoperfusion” states, associated with the narrowing of the vessels. 1. Introduction Asymptomatic patients with substantial (i.e., 60%–90%) carotid artery narrowing, but no recent neurological symptoms, are at increased long-term risk of ischemic stroke, especially in areas of the brain supplied by the artery. Endarterectomy (CEA) or stenting (CAS) of the carotid artery removes the arterial narrowing, but the procedure itself causes immediate risk of stroke or death. It is object of a long-lasting debate to establish whether the risk overcomes what seems to be a substantial reduction of nonperioperative stroke over a 10-year period following CEA [1]. Improvements in stroke prevention obtained by medical treatment alone and care, in the last few years, seem to support conservative approaches in asymptomatic subjects [2, 3]. The debate is still ongoing [4]. A side aspect, consistently dismissed in clinical settings, concerns the notion that CEA or CAS may improve brain functions by resolving a hypothetical “hypoperfusion” state, associated with narrowing of the vessels [5–7]. The hypothesis has been probably underestimated for long time, as supportive data were essentially of anecdotal nature. A number of case reports have shown improvement in cognitive impairment

References

[1]  A. Halliday, M. Harrison, E. Hayter et al., “10-year stroke prevention after successful carotid endarterectomy for asymptomatic stenosis (ACST-1): a multicentre randomised trial,” The Lancet, vol. 376, no. 9746, pp. 1074–1084, 2010.
[2]  A. R. Naylor, “Time to rethink management strategies in asymptomatic carotid artery disease,” Nature Reviews Cardiology, vol. 9, no. 2, pp. 116–124, 2012.
[3]  A. Abbott, “Asymptomatic carotid artery stenosis—it's time to stop operating,” Nature Clinical Practice Neurology, vol. 4, no. 1, pp. 4–5, 2008.
[4]  G. Saposnik and R. Topakian, “Understanding risk in asymptomatic carotid stenosis: lessons from patients' preferences,” Neurology, vol. 78, no. 5, pp. 298–299, 2012.
[5]  W. J. Powers, “Cerebral hemodynamics in ischemic cerebrovascular disease,” Annals of Neurology, vol. 29, no. 3, pp. 231–240, 1991.
[6]  K. A. Arntzen, H. Schirmer, S. H. Johnsen, T. Wilsgaard, and E. B. Mathiesen, “Carotid atherosclerosis predicts lower cognitive test results: a 7-year follow-up study of 4,371 stroke-free subjects—the tromso study,” Cerebrovascular Diseases, vol. 33, no. 2, pp. 159–165, 2012.
[7]  Y. M. Chuang, K. L. Huang, Y. J. Chang et al., “Immediate regression of leukoaraiosis after carotid artery revascularization,” Cerebrovascular Diseases, vol. 32, no. 5, pp. 439–446, 2011.
[8]  S. J. Fearn, S. Hutchinson, G. Riding, G. Hill-Wilson, K. Wesnes, and C. N. McCollum, “Carotid endarterectomy improves cognitive function in patients with exchausted cerebrovascular reserve,” European Journal of Vascular and Endovascular Surgery, vol. 26, no. 5, pp. 529–536, 2003.
[9]  M. Sasoh, K. Ogasawara, K. Kuroda et al., “Effects of EC-IC bypass surgery on cognitive impairment in patients with hemodynamic cerebral ischemia,” Surgical Neurology, vol. 59, no. 6, pp. 455–460, 2003.
[10]  K. Chida, K. Ogasawara, K. Aso et al., “Postcarotid endarterectomy improvement in cognition is associated with resolution of crossed cerebellar hypoperfusion and increase in I-Iomazenil uptake in the cerebral cortex: a SPECT study,” Cerebrovascular Diseases, vol. 29, no. 4, pp. 343–351, 2010.
[11]  M. S. Lin, M. J. Chiu, Y. W. Wu et al., “Neurocognitive improvement after carotid artery stenting in patients with chronic internal carotid artery occlusion and cerebral ischemia,” Stroke, vol. 42, no. 10, pp. 2850–2854, 2011.
[12]  A. Altinbas, M. J. E. van Zandvoort, E. van den Berg et al., “Cognition after carotid endarterectomy or stenting: a randomized comparison,” Neurology, vol. 77, no. 11, pp. 1084–1090, 2011.
[13]  M. Chmayssani, R. M. Lazar, J. Hirsch, and R. S. Marshall, “Reperfusion normalizes motor activation patterns in Large-Vessel disease,” Annals of Neurology, vol. 65, no. 2, pp. 203–208, 2009.
[14]  G. A. Carlesimo, C. Caltagirone, and G. Gainotti, “The mental deterioration battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment,” European Neurology, vol. 36, no. 6, pp. 378–384, 1996.
[15]  R. K. Heaton, Wisconsin Card Sorting Test Manual, Psychological Assessment Resources, Odessa, Fla, USA, 1981.
[16]  A. T. Beck, Beck Depression Inventory Manual, The Psychological Corporation, San Antonio, Tex, USA, 1987.
[17]  M. Hamilton, “A rating scale for depression,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 23, pp. 56–62, 1960.
[18]  M. Hamilton, “The clinical distinction between anxiety and depression,” The British Journal of Clinical Pharmacology, vol. 15, supplement 2, pp. 165S–169S, 1983.
[19]  V. A. Mantese, C. H. Timaran, D. Chiu, R. J. Begg, and T. G. Brott, “The carotid revascularization endarterectomy versus stenting trial (CREST): stenting versus carotid endarterectomy for carotid disease,” Stroke, vol. 41, no. 10, pp. S31–S34, 2010.
[20]  E. B. Ringelstein, C. Sievers, S. Ecker, P. A. Schneider, and S. M. Otis, “Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions,” Stroke, vol. 19, no. 8, pp. 963–969, 1988.
[21]  W. L. Young, I. Prohovnik, E. Ornstein, N. Ostapkovich, and R. S. Matteo, “Cerebral blood flow reactivity to changes in carbon dioxide calculated using end-tidal versus arterial tensions,” Journal of Cerebral Blood Flow and Metabolism, vol. 11, no. 6, pp. 1031–1035, 1991.
[22]  R. S. Marshall, T. Rundek, D. M. Sproule, B. M. Fitzsimmons, S. Schwartz, and R. M. Lazar, “Monitoring of cerebral vasodilatory capacity with transcranial Doppler carbon dioxide inhalation in patients with severe carotid artery disease,” Stroke, vol. 34, no. 4, pp. 945–949, 2003.
[23]  K. Peebles, L. Celi, K. McGrattan, C. Murrell, K. Thomas, and P. N. Ainslie, “Human cerebrovascular and ventilatory CO2 reactivity to end-tidal, arterial and internal jugular vein PCO2,” Journal of Physiology, vol. 584, no. 1, pp. 347–357, 2007.
[24]  P. Démolis, Y. R. T. Dinh, and J. Giudicelli, “Relationships between cerebral regional blood flow velocities and volumetric blood flows and their respective reactivities to acetazolamide,” Stroke, vol. 27, no. 10, pp. 1835–1839, 1996.
[25]  P. de Rango, V. Caso, D. Leys, M. Paciaroni, M. Lenti, and P. Cao, “The role of carotid artery stenting and carotid endarterectomy in cognitive performance: a systematic review,” Stroke, vol. 39, no. 11, pp. 3116–3127, 2008.
[26]  I. Q. Grunwald, P. Papanagiotou, W. Reith et al., “Influence of carotid artery stenting on cognitive function,” Neuroradiology, vol. 52, no. 1, pp. 61–66, 2010.
[27]  J. Aharon-Peretz, R. Tomer, I. Gabrieli, D. Aharonov, S. Nitecki, and A. Hoffman, “Cognitive performance following endarterectomy in asymptomatic severe carotid stenosis,” European Journal of Neurology, vol. 10, no. 5, pp. 525–528, 2003.
[28]  E. R. Bossema, N. Brand, F. L. Moll, R. G. A. Ackerstaff, and L. J. P. van Doornen, “Does carotid endarterectomy improve cognitive functioning?” Journal of Vascular Surgery, vol. 41, no. 5, pp. 775–781, 2005.
[29]  M. Silvestrini, I. Paolino, F. Vernieri et al., “Cerebral hemodynamics and cognitive performance in patients with asymptomatic carotid stenosis,” Neurology, vol. 72, no. 12, pp. 1062–1068, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133