全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adenoviral Delivery of the VEGF and BMP-6 Genes to Rat Mesenchymal Stem Cells Potentiates Osteogenesis

DOI: 10.1155/2013/737580

Full-Text   Cite this paper   Add to My Lib

Abstract:

The combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF), and bone morphogenetic protein (BMP) to sites of bone injury results in enhanced repair compared to the administration of a single factor or a combination of two factors. Based on these findings, we hypothesized that coexpression of VEGF and BMP-6 genes would enhance the osteoblastic differentiation of rat bone-marrow-derived stem cells (rMSCs) and osteogenesis by comparison to rMSCs that do not express VEGF and BMP-6. We prepared a GFP tagged adenovirus vector (Ad-VEGF+BMP-6) that contained DNA encoding the hVEGF and hBMP-6 genes. rMSCs were transduced with the virus, and the successful transduction was confirmed by green fluorescence and by production of VEGF and BMP-6 proteins. The cells were cultured to assess osteoblastic differentiation or administered in the Fischer 344 rats to assess bone formation. Mineralization of rMSCs transduced with Ad-VEGF+BMP-6 was significantly enhanced over the nontransduced rMSCs. Only transduced rMSCs could induce osteogenesis in vivo, whereas Ad-VEGF+BMP-6 or nontransduced rMSCs alone did not induce osteogenesis. The data suggests that the combined delivery of MSCs, VEGF, and BMP-6 is an attractive option for bone repair therapy. 1. Introduction Bone morphogenetic proteins (BMPs) are members of the TGF-beta superfamily that possess a number of physiologic activities including the maintenance and stimulation of osteoblast differentiation [1]. The BMPs exert their effects on target tissues by binding to two types of serine/threonine kinase receptors forming a complex that phosphorylates transcription factors referred to as SMADs [2]. SMADs then act at the genomic level to alter the expression of proteins by target cells [1–3]. While BMPs have been shown to have a wide range of physiologic activities, the primary focus in the orthopaedic literature has been on their osteogenic properties that relate to bone formation in vitro and in vivo, as well as the ability of BMPs to promote skeletal repair and healing of critical sized bone defects [2, 4–28]. Several studies have attempted to determine the osteogenic potential of individual BMPs in comparison to one another [2, 12, 14, 17–19, 29]. Studies by Kang et al. [14], Li et al. [18], and Luu et al. [19] have shown that BMP-6 and BMP-9 possess superior osteogenic potential compared to BMP-4 and BMP-7 and at least equal to the osteogenic potential of BMP-2. Investigations by Vukicevic and Grgurevic [26] and Ebisawa et al. [2] have shown that BMP-6 is a more potent inducer of

References

[1]  D. Chen, M. Zhao, and G. R. Mundy, “Bone morphogenetic proteins,” Growth Factors, vol. 22, no. 4, pp. 233–241, 2004.
[2]  T. Ebisawa, K. Tada, I. Kitajima et al., “Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation,” Journal of Cell Science, vol. 112, pp. 3519–3527, 1999.
[3]  T. A. Einhorn, R. J. O'Keefe, and J. A. Buckwalter, Orthopaedic Basic Science: Foundations of Clinical Practice, American Academy of Orthopaedic Surgeons, 2007.
[4]  A. C. Akman, R. S. Ti?li, M. Gumusderelioglu, and R. M. Nohutcu, “Bone morphogenetic protein-6-loaded chitosan scaffolds enhance the osteoblastic characteristics of MC3T3-E1 cells,” Artificial Organs, vol. 34, no. 1, pp. 65–74, 2010.
[5]  N. Bachl, W. Derman, L. Engebretsen et al., “Therapeutic use of growth factors in the musculoskeletal system in sports-related injuries,” Journal of Sports Medicine and Physical Fitness, vol. 49, no. 4, pp. 346–357, 2009.
[6]  A. L. Bertone, D. D. Pittman, M. L. Bouxsein, J. Li, B. Clancy, and H. J. Seeherman, “Adenoviral-mediated transfer of human BMP-6 gene accelerates healing in a rabbit ulnar osteotomy model,” Journal of Orthopaedic Research, vol. 22, no. 6, pp. 1261–1270, 2004.
[7]  C. F. Dilling, A. M. Wada, Z. W. Lazard et al., “Vessel formation is induced prior to the appearance of cartilage in BMP-2-mediated heterotopic ossification,” Journal of Bone and Mineral Research, vol. 25, no. 5, pp. 1147–1156, 2010.
[8]  M. Fajardo, C. J. Liu, and K. Egol, “Levels of expression for BMP-7 and several BMP antagonists may play an integral role in a fracture nonunion: a pilot study,” Clinical Orthopaedics and Related Research, vol. 467, no. 12, pp. 3071–3078, 2009.
[9]  F. Cui, X. Wang, X. Liu, A. S. Dighe, G. Balian, and Q. Cui, “VEGF and BMP-6 enhance bone formation mediated by cloned mouse osteoprogenitor cells,” Growth Factors, vol. 28, no. 5, pp. 306–317, 2010.
[10]  W. A. Grasser, I. Orlic, F. Borovecki et al., “BMP-6 exerts its osteoinductive effect through activation of IGF-I and EGF pathways,” International Orthopaedics, vol. 31, no. 6, pp. 759–765, 2007.
[11]  H. Hou, X. Zhang, T. Tang, K. Dai, and R. Ge, “Enhancement of bone formation by genetically-engineered bone marrow stromal cells expressing BMP-2, VEGF and angiopoietin-1,” Biotechnology Letters, vol. 31, no. 8, pp. 1183–1189, 2009.
[12]  A. Ishihara, K. M. Shields, A. S. Litsky et al., “Osteogenic gene regulation and relative acceleration of healing by adenoviral-mediated transfer of human BMP-2 or -6 in equine osteotomy and ostectomy models,” Journal of Orthopaedic Research, vol. 26, no. 6, pp. 764–771, 2008.
[13]  J. M. Kanczler, P. J. Ginty, L. White et al., “The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation,” Biomaterials, vol. 31, no. 6, pp. 1242–1250, 2010.
[14]  Q. Kang, M. H. Sun, H. Cheng et al., “Characterization of the distinct orthotopic bone-forming activity of 14?BMPs using recombinant adenovirus-mediated gene delivery,” Gene Therapy, vol. 11, no. 17, pp. 1312–1320, 2004.
[15]  D. H. R. Kempen, L. Lu, A. Heijink et al., “Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration,” Biomaterials, vol. 30, no. 14, pp. 2816–2825, 2009.
[16]  J. Lammens, Z. Liu, and F. Luyten, “Bone morphogenetic protein signaling in the murine distraction osteogenesis model,” Acta Orthopaedica Belgica, vol. 75, no. 1, pp. 94–102, 2009.
[17]  K. Lavery, P. Swain, D. Falb, and M. H. Alaoui-Ismaili, “BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells,” The Journal of Biological Chemistry, vol. 283, no. 30, pp. 20948–20958, 2008.
[18]  J. Z. Li, H. Li, T. Sasaki et al., “Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in the rat,” Gene Therapy, vol. 10, no. 20, pp. 1735–1743, 2003.
[19]  H. H. Luu, W. X. Song, X. Luo et al., “Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 25, no. 5, pp. 665–677, 2007.
[20]  R. Marsell and T. A. Einhorn, “The role of endogenous bone morphogenetic proteins in normal skeletal repair,” Injury, vol. 40, supplement 3, pp. S4–S7, 2009.
[21]  Z. S. Patel, S. Young, Y. Tabata, J. A. Jansen, M. E. K. Wong, and A. G. Mikos, “Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model,” Bone, vol. 43, no. 5, pp. 931–940, 2008.
[22]  H. Peng, A. Usas, A. Olshanski et al., “VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis,” Journal of Bone and Mineral Research, vol. 20, no. 11, pp. 2017–2027, 2005.
[23]  H. Peng, V. Wright, A. Usas et al., “Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4,” Journal of Clinical Investigation, vol. 110, no. 6, pp. 751–759, 2002.
[24]  M. Samee, S. Kasugai, H. Kondo, K. Ohya, H. Shimokawa, and S. Kuroda, “Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation,” Journal of Pharmacological Sciences, vol. 108, no. 1, pp. 18–31, 2008.
[25]  J. Street, M. Bao, L. DeGuzman et al., “Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 9656–9661, 2002.
[26]  S. Vukicevic and L. Grgurevic, “BMP-6 and mesenchymal stem cell differentiation,” Cytokine and Growth Factor Reviews, vol. 20, no. 5-6, pp. 441–448, 2009.
[27]  E. A. Wang, V. Rosen, J. S. D'Alessandro et al., “Recombinant human bone morphogenetic protein induces bone formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 6, pp. 2220–2224, 1990.
[28]  S. Young, Z. S. Patel, J. D. Kretlow et al., “Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenetic protein-2 on bone regeneration in a rat critical-size defect model,” Tissue Engineering A, vol. 15, no. 9, pp. 2347–2362, 2009.
[29]  T. A. Zachos, K. M. Shields, and A. L. Bertone, “Gene-mediated osteogenic differentiation of stem cells by bone morphogenetic proteins-2 or -6,” Journal of Orthopaedic Research, vol. 24, no. 6, pp. 1279–1291, 2006.
[30]  F. Geiger, H. Lorenz, W. Xu et al., “VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute,” Bone, vol. 41, no. 4, pp. 516–522, 2007.
[31]  M. O. Hiltunen, M. Ruuskanen, J. Huuskonen et al., “Adenovirus-mediated VEGF-A gene transfer induces bone formation in vivo,” The FASEB Journal, vol. 17, no. 9, pp. 1147–1149, 2003.
[32]  D. M. Pacicca, N. Patel, C. Lee et al., “Expression of angiogenic factors during distraction osteogenesis,” Bone, vol. 33, no. 6, pp. 889–898, 2003.
[33]  C. J. Wang, K. E. Huang, Y. C. Sun et al., “VEGF modulates angiogenesis and osteogenesis in shockwave-promoted fracture healing in rabbits,” Journal of Surgical Research, vol. 171, no. 1, pp. 114–119, 2010.
[34]  P. Simic, J. B. Culej, I. Orlic et al., “Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption,” The Journal of Biological Chemistry, vol. 281, no. 35, pp. 25509–25521, 2006.
[35]  R. Garimella, S. E. Tague, J. Zhang et al., “Expression and synthesis of bone morphogenetic proteins by osteoclasts: a possible path to anabolic bone remodeling,” Journal of Histochemistry and Cytochemistry, vol. 56, no. 6, pp. 569–577, 2008.
[36]  A. Wutzl, W. Brozek, I. Lernbass et al., “Bone morphogenetic proteins 5 and 6 stimulate osteoclast generation,” Journal of Biomedical Materials Research A, vol. 77, no. 1, pp. 75–83, 2006.
[37]  K. Song, C. Krause, S. Shi et al., “Identification of a key residue mediating bone morphogenetic protein (BMP)-6 resistance to noggin inhibition allows for engineered BMPs with superior agonist activity,” The Journal of Biological Chemistry, vol. 285, no. 16, pp. 12169–12180, 2010.
[38]  Y. C. Huang, D. Kaigler, K. G. Rice, P. H. Krebsbach, and D. J. Mooney, “Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration,” Journal of Bone and Mineral Research, vol. 20, no. 5, pp. 848–857, 2005.
[39]  Y. Zhang, V. Madhu, A. S. Dighe, J. N. Irvine Jr., and Q. Cui, “Osteogenic response of human adipose-derived stem cells to BMP-6, VEGF, and combined VEGF plus BMP-6 in vitro,” Growth Factors, vol. 30, no. 5, pp. 333–343, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133