全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High-Frequency Vibration Treatment of Human Bone Marrow Stromal Cells Increases Differentiation toward Bone Tissue

DOI: 10.1155/2013/803450

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to verify whether differentiation of adult stem cells toward bone tissue is promoted by high-frequency vibration (HFV), bone marrow stromal cells (BMSCs) were mechanically stimulated with HFV (30?Hz) for 45 minutes a day for 21 or 40 days. Cells were seeded in osteogenic medium, which enhances differentiation towards bone tissue. The effects of the mechanical treatment on differentiation were measured by Alizarin Red test, (q) real-time PCR, and protein content of the extracellular matrix. In addition, we analyzed the proliferation rate and apoptosis of BMSC subjected to mechanical stimulation. A strong increase in all parameters characterizing differentiation was observed. Deposition of calcium was almost double in the treated samples; the expression of genes involved in later differentiation was significantly increased and protein content was higher for all osteogenic proteins. Lastly, proliferation results indicated that stimulated BMSCs have a decreased growth rate in comparison with controls, but both treated and untreated cells do not enter the apoptosis process. These findings could reduce the gap between research and clinical application for bone substitutes derived from patient cells by improving the differentiation protocol for autologous cells and a further implant of the bone graft into the patient. 1. Introduction Despite an increased interest in tissue regeneration, the availability of cells remains a serious limitation for clinical applications in regenerative medicine. Autologous adult stem cells must be expanded and induced along specific cell lines; this process implies long culture periods. Thus, a great challenge consists in finding methods to selectively improve differentiation toward tissue, which would consequently reduce the differentiation period. Several stimulation methods that use different sources of energy have been widely tested to improve the rate of differentiation of primary cell culture to osteoblasts, that is, ultrasound [1, 2] and electromagnetic fields [3–5]. In particular, following a biomimetic approach, mechanical stress has been demonstrated to be a good stimulus. It promotes early cell differentiation into bone [6, 7] and may be achieved by either flow perfusion bioreactors [6, 8] or physical mechanical stress [9, 10]. In fact, cells such as osteoblasts and fibroblasts respond to a variety of stresses, including compression, torsion, and tension. These facilitate matrix turnover and remodelling [11, 12] through mechanical signals which are translated by cell surface receptors via intracellular pathway

References

[1]  C. M. Korstjens, P. A. Nolte, E. H. Burger et al., “Stimulation of bone cell differentiation by low-intensity ultrasound—a histomorphometric in vitro study,” Journal of Orthopaedic Research, vol. 22, no. 3, pp. 495–500, 2004.
[2]  L. Fassina, E. Saino, M. G. Cusella De Angelis, G. Magenes, F. Benazzo, and L. Visai, “Low-power ultrasounds as a tool to culture human osteoblasts inside cancellous hydroxyapatite,” Bioinorganic Chemistry and Applications, vol. 2010, Article ID 456240, 8 pages, 2010.
[3]  P. Diniz, K. Shomura, K. Soejima, and G. Ito, “Effects of periodic pulsed electromagnetic field stimulation on proliferation, differentiation and bone-like matrix mineralization in osteoblasts in different maturational stages,” Bone, vol. 28, no. 5, article S155, 2001.
[4]  L. Fassina, L. Visai, F. Benazzo et al., “Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold,” Tissue Engineering, vol. 12, no. 7, pp. 1985–1999, 2006.
[5]  M. T. Tsai, W. H. S. Chang, K. Chang, R. J. Hou, and T. W. Wu, “Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering,” Bioelectromagnetics, vol. 28, no. 7, pp. 519–528, 2007.
[6]  L. Fassina, L. Visai, L. Asti et al., “Calcified matrix production by SAOS-2 cells inside a polyurethane porous scaffold, using a perfusion bioreactor,” Tissue Engineering, vol. 11, no. 5-6, pp. 685–700, 2005.
[7]  A. Ignatius, H. Blessing, A. Liedert et al., “Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices,” Biomaterials, vol. 26, no. 3, pp. 311–318, 2005.
[8]  M. E. Gomes, R. L. Reis, and A. G. Mikos, “Bone tissue engineering constructs based on starch scaffolds and bone marrow cells cultured in a flow perfusion bioreactor,” Materials Science Forum, vol. 514–516, no. 2, pp. 980–984, 2006.
[9]  S. Kimoto, M. Matsuzawa, T. Onishi, N. Uchimura, T. Kawase, and S. Saito, “Effect of mechanical stress on osteoblast-like cells derived from alveolar bone,” Journal of Dental Research, vol. 75, article 583, 1996.
[10]  R. Smalt, F. T. Mitchell, R. L. Howard, and T. J. Chambers, “Mechanical strain versus wall shear stress as the stimulus to bone cells in mechanical loading,” Journal of Bone and Mineral Research, vol. 11, article M336, 1996.
[11]  C. H. Lee, H. J. Shin, I. H. Cho et al., “Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast,” Biomaterials, vol. 26, no. 11, pp. 1261–1270, 2005.
[12]  G. P. Thomas and A. J. El Haj, “Bone marrow stromal cells are load responsive in vitro,” Calcified Tissue International, vol. 58, no. 2, pp. 101–108, 1996.
[13]  M. Chiquet, M. Matthisson, M. Koch, M. Tannheimer, and R. Chiquet-Ehrismann, “Regulation of extracellular matrix synthesis by mechanical stress,” Biochemistry and Cell Biology, vol. 74, no. 6, pp. 737–744, 1996.
[14]  E. Ruoslahti, “Stretching is good for a cell,” Science, vol. 276, no. 5317, pp. 1345–1346, 1997.
[15]  B. Tian, K. Lessan, J. Kahm, J. Kleidon, and C. Henke, “β1 integrin regulates fibroblast viability during collagen matrix contraction through a phosphatidylinositol 3-kinase/Akt/protein kinase B signaling pathway,” Journal of Biological Chemistry, vol. 277, no. 27, pp. 24667–24675, 2002.
[16]  R. G. Bacabac, T. H. Smit, J. J. W. A. Van Loon, B. Z. Doulabi, M. Helder, and J. Klein-Nulend, “Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm?” FASEB Journal, vol. 20, no. 7, pp. 858–864, 2006.
[17]  H. F. Shi, W. H. Cheung, L. Qin, A. H. C. Leung, and K. S. Leung, “Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone,” Bone, vol. 46, no. 5, pp. 1299–1305, 2010.
[18]  E. Lau, S. Al-Dujaili, A. Guenther, D. Liu, L. Wang, and L. You, “Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts,” Bone, vol. 46, no. 6, pp. 1508–1515, 2010.
[19]  D. Prè, G. Ceccarelli, L. Benedetti, G. Magenes, and M. G. C. De Angelis, “Effects of low-amplitude, high-frequency vibrations on proliferation and differentiation of SAOS-2 Human osteogenic cell line,” Tissue Engineering Part C, vol. 15, no. 4, pp. 669–679, 2009.
[20]  D. Prè, G. Ceccarelli, G. Gastaldi et al., “The differentiation of human adipose-derived stem cells (hASCs) into osteoblasts is promoted by low amplitude, high frequency vibration treatment,” Bone, vol. 49, no. 2, pp. 295–303, 2011.
[21]  T. Marui, C. Niyibizi, H. I. Georgescu et al., “Effect of growth factors on matrix synthesis by ligament fibroblasts,” Journal of Orthopaedic Research, vol. 15, no. 1, pp. 18–23, 1997.
[22]  J. E. Moreau, J. Chen, R. L. Horan, D. L. Kaplan, and G. H. Altman, “Sequential growth factor application in bone marrow stromal cell ligament engineering,” Tissue Engineering, vol. 11, no. 11-12, pp. 1887–1897, 2005.
[23]  F. J. Hughes and C. A. G. McCulloch, “Stimulation of the differentiation of osteogenic rat bone marrow stromal cells by osteoblast cultures,” Laboratory Investigation, vol. 64, no. 5, pp. 617–622, 1991.
[24]  Z. Li, S. J. Yao, M. Alini, and M. J. Stoddart, “Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress,” Tissue Engineering Part A, vol. 16, no. 2, pp. 575–584, 2010.
[25]  U. N?th, L. Rackwitz, A. Heymer et al., “Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels,” Journal of Biomedical Materials Research Part A, vol. 83, no. 3, pp. 626–635, 2007.
[26]  A. Burlacu, A. M. Rosca, H. Maniu et al., “Promoting effect of 5-azacytidine on the myogenic differentiation of bone marrow stromal cells,” European Journal of Cell Biology, vol. 87, no. 3, pp. 173–184, 2008.
[27]  H. Tian, S. Bharadwaj, Y. Liu et al., “Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering,” Biomaterials, vol. 31, no. 5, pp. 870–877, 2010.
[28]  F. Scintu, C. Reali, R. Pillai et al., “Differentiation of human bone marrow stem cells into cells with a neural phenotype: diverse effects of two specific treatments,” BMC Neuroscience, vol. 7, article 14, 2006.
[29]  M. M. Yaghoobi and M. T. Mahani, “NGF and BDNF expression drop off in neurally differentiated bone marrow stromal stem cells,” Brain Research, vol. 1203, pp. 26–31, 2008.
[30]  G. Wang, B. A. Bunnell, R. G. Painter et al., “Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 1, pp. 186–191, 2005.
[31]  J. Xu, X. Liu, J. Chen et al., “Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway,” American Journal of Physiology, vol. 296, no. 3, pp. C535–C543, 2009.
[32]  N. Saulnier, W. Lattanzi, M. A. Puglisi et al., “Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage,” European Review for Medical and Pharmacological Sciences, vol. 13, no. 1, supplement, pp. 71–78, 2009.
[33]  Y. Yang, B. Qu, J. H. Huo, S. L. Wu, M. Y. Zhang, and Z. R. Wang, “Serum from radiofrequency-injured livers induces differentiation of bone marrow stem cells into hepatocyte-like cells,” Journal of Surgical Research, vol. 155, no. 1, pp. 18–24, 2009.
[34]  S. Gronthos, A. C. W. Zannettino, S. J. Hay et al., “Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow,” Journal of Cell Science, vol. 116, no. 9, pp. 1827–1835, 2003.
[35]  I. Tognarini, S. Sorace, R. Zonefrati et al., “In vitro differentiation of human mesenchymal stem cells on Ti6Al4V surfaces,” Biomaterials, vol. 29, no. 7, pp. 809–824, 2008.
[36]  S. L. Cheng, J. W. Yang, L. Rifas, S. F. Zhang, and L. V. Avioli, “Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone,” Endocrinology, vol. 134, no. 1, pp. 277–286, 1994.
[37]  M. E. Bernardo, A. Cometa, R. Villa, et al., “Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms,” Blood, vol. 110, no. 11, article 367A, 2007.
[38]  D. Prè, G. Magenes, G. Ceccarelli, and M. G. Cusella De Angelis, “A high frequency vibrating system to stimulate cells in bone tissue engineering,” in Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering (iCBBE '08), pp. 884–887, May 2006.
[39]  C. Bosco, R. Colli, E. Introini et al., “Adaptive responses of human skeletal muscle to vibration exposure,” Clinical Physiology, vol. 19, no. 2, pp. 183–187, 1999.
[40]  M. Cardinale, J. Leiper, P. Farajian, and M. Heer, “Whole-body vibration can reduce calciuria induced by high protein intakes and may counteract bone resorption: a preliminary study,” Journal of Sports Sciences, vol. 25, no. 1, pp. 111–119, 2007.
[41]  L. V. Hale, Y. F. Ma, and R. F. Santerre, “Semi-quantitative fluorescence analysis of calcein binding as a measurement of in vitro mineralization,” Calcified Tissue International, vol. 67, no. 1, pp. 80–84, 2000.
[42]  A. K. Majors, C. A. Boehm, H. Nitto, R. J. Midura, and G. F. Muschler, “Characterization of human bone marrow stromal cells with respect to osteoblastic differentiation,” Journal of Orthopaedic Research, vol. 15, no. 4, pp. 546–557, 1997.
[43]  T. Komori, “Regulation of osteoblast differentiation by runx2,” Advances in Experimental Medicine and Biology, vol. 658, pp. 43–49, 2010.
[44]  M. Owen and A. J. Friedenstein, “Stromal stem cells: marrow-derived osteogenic precursors,” Ciba Foundation Symposium, vol. 136, pp. 42–60, 1988.
[45]  D. T. Denhardt and X. Guo, “Osteopontin: a protein with diverse functions,” FASEB Journal, vol. 7, no. 15, pp. 1475–1482, 1993.
[46]  F. Azari, H. Vali, J. L. Guerquin-Kern et al., “Intracellular precipitation of hydroxyapatite mineral and implications for pathologic calcification,” Journal of Structural Biology, vol. 162, no. 3, pp. 468–479, 2008.
[47]  J. A. R. Gordon, C. E. Tye, A. V. Sampaio, T. M. Underhill, G. K. Hunter, and H. A. Goldberg, “Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro,” Bone, vol. 41, no. 3, pp. 462–473, 2007.
[48]  A. Yamaguchi, T. Komori, and T. Suda, “Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1,” Endocrine Reviews, vol. 21, no. 4, pp. 393–411, 2000.
[49]  J. Z. Xing, L. Zhu, J. A. Jackson et al., “Dynamic monitoring of cytotoxicity on microelectronic sensors,” Chemical Research in Toxicology, vol. 18, no. 2, pp. 154–161, 2005.
[50]  N. W. Roehm, G. H. Rodgers, S. M. Hatfield, and A. L. Glasebrook, “An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT,” Journal of Immunological Methods, vol. 142, no. 2, pp. 257–265, 1991.
[51]  N. J. Marshall, C. J. Goodwin, and S. J. Holt, “A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function,” Growth Regulation, vol. 5, no. 2, pp. 69–84, 1995.
[52]  E. Saino, S. Grandi, E. Quartarone et al., “In vitro calcified matrix deposition by human osteoblasts onto a zinc-containing bioactive glass,” European Cells and Materials, vol. 21, pp. 59–72, 2011.
[53]  C. T. Rubin, R. Recker, D. Cullen, J. Ryaby, J. McCabe, and K. McLeod, “Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety,” Journal of Bone and Mineral Research, vol. 19, no. 3, pp. 343–351, 2004.
[54]  E. Rietschel, S. Van Koningsbruggen, O. Fricke, O. Semler, and E. Schoenau, “Whole body vibration: a new therapeutic approach to improve muscle function in cystic fibrosis?” International Journal of Rehabilitation Research, vol. 31, no. 3, pp. 253–256, 2008.
[55]  T. Trans, J. Aaboe, M. Henriksen, R. Christensen, H. Bliddal, and H. Lund, “Effect of whole body vibration exercise on muscle strength and proprioception in females with knee osteoarthritis,” Knee, vol. 16, no. 4, pp. 256–261, 2009.
[56]  R. W. K. Lau, T. Teo, F. Yu, R. C. K. Chung, and M. Y. C. Pang, “Effects of whole-body vibration on sensorimotor performance in people with parkinson disease: a systematic review,” Physical Therapy, vol. 91, no. 2, pp. 198–209, 2011.
[57]  D. Howard, L. D. Buttery, K. M. Shakesheff, and S. J. Roberts, “Tissue engineering: strategies, stem cells and scaffolds,” Journal of Anatomy, vol. 213, no. 1, pp. 66–72, 2008.
[58]  W. R. Otto and J. Rao, “Tomorrow's skeleton staff: mesenchymal stem cells and the repair of bone and cartilage,” Cell Proliferation, vol. 37, no. 1, pp. 97–110, 2004.
[59]  I. S. Kim, Y. M. Song, T. H. Cho et al., “In vitro response of primary human bone marrow stromal cells to recombinant human bone morphogenic protein-2 in the early and late stages of osteoblast differentiation,” Development Growth and Differentiation, vol. 50, no. 7, pp. 553–564, 2008.
[60]  E. Potier, J. Noailly, and K. Ito, “Directing bone marrow-derived stromal cell function with mechanics,” Journal of Biomechanics, vol. 43, no. 5, pp. 807–817, 2010.
[61]  C. Zhang, J. Li, L. Zhang et al., “Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells,” Archives of Oral Biology, vol. 57, no. 10, pp. 1395–1407, 2012.
[62]  Y. Zhou, X. Guan, Z. Zhu et al., “Osteogenic differentiation of bone marrow-derived mesenchymal stromal cells on bone-derived scaffolds: effect of microvibration and role of ERK1/2 activation,” European Cells and Materials, vol. 22, pp. 12–25, 2011.
[63]  S. H. Kim, J. Turnbull, and S. Guimond, “Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor,” Journal of Endocrinology, vol. 209, no. 2, pp. 139–151, 2011.
[64]  C. S. Chen, “Mechanotransduction—a field pulling together?” Journal of Cell Science, vol. 121, no. 20, pp. 3285–3292, 2008.
[65]  D. E. Jaalouk and J. Lammerding, “Mechanotransduction gone awry,” Nature Reviews Molecular Cell Biology, vol. 10, no. 1, pp. 63–73, 2009.
[66]  S. I. Deliloglu-Gurhan, H. S. Vatansever, F. Ozdal-Kurt, and I. Tuglu, “Characterization of osteoblasts derived from bone marrow stromal cells in a modified cell culture system,” Acta Histochemica, vol. 108, no. 1, pp. 49–57, 2006.
[67]  T. A. Owen, M. Aronow, V. Shalhoub et al., “Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix,” Journal of Cellular Physiology, vol. 143, no. 3, pp. 420–430, 1990.
[68]  J. E. Aubin and F. Liu, “The osteoblast lineage,” in Principles of Bone Biology, J. P. Bilezkian, L. G. Raisz, and G. A. Rodan, Eds., pp. 51–67, Academic Press, San Diego, Calif, USA, 1996.
[69]  P. Bornstein and E. H. Sage, “Matricellular proteins: extracellular modulators of cell function,” Current Opinion in Cell Biology, vol. 14, no. 5, pp. 608–616, 2002.
[70]  M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials, vol. 19, no. 18, pp. 1621–1639, 1998.
[71]  S. L. Manske, C. A. Good, R. F. Zernicke, and S. K. Boyd, “High-frequency, low-magnitude vibration does not prevent bone loss resulting from muscle disuse in mice following botulinum toxin injection,” PLoS ONE, vol. 7, no. 5, Article ID e36486, 2012.
[72]  G. M. Pagnotti, B. J. Adler, D. E. Green, et al., “Low magnitude mechanical signals mitigate osteopenia without compromising longevity in an aged murine model of spontaneous granulosa cell ovarian cancer,” Bone, vol. 51, no. 3, pp. 570–577, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133