Mesenchymal stromal cells (MSCs) are multipotent cells found in connective tissues that can differentiate into bone, cartilage, and adipose tissue. Interestingly, they can regulate immune responses in a paracrine way and allogeneic MSCs do not elicit immune response. These properties have encouraged a number of clinical trials in a broad range of regenerative therapies. Although these trials were first focused on their differentiation properties, in the last years, the immunosuppressive features have gained most of the attention. In this review, we will summarize the up-to-date knowledge about the immunosuppressive mechanisms of MSCs in vivo and in vitro and the most promising approaches in clinical investigation. 1. Introduction Mesenchymal stromal cells (MSCs) are found in a variety of tissues, although bone marrow represents the most common source for research and clinical purposes. These cells are multipotent progenitors that have the capacity to differentiate into multiple lineages such as bone, cartilage, and adipocytes [1–3]. MSCs have received renewed interest in the last five years, particularly due to their ability to modulate the immune response. This property, in combination with the facts that they are not immunogenic and preferentially home to damaged tissue, makes them good candidates for a therapeutic approach of cell-based therapy for a wide range of autoimmune disorders [4–6]. Currently, there are a large number of ongoing clinical trials employing MSCs as immunomodulators. MSCs have been shown to regulate the activity in a range of effector cells involved in both innate and adaptive immunities. The crosstalk between MSCs and the cells of the immune system leads to an increased production of several soluble immunomodulatory factors. Despite identification of many of these factors, the mechanism behind MSCs immunomodulation is not fully understood. However, the inflammatory environment and in particular the immune cells involved in each phase of the immune response are likely to be the critical determinants of the regulatory process. The immunosuppressive ability of MSCs is not constitutive but rather is induced by crosstalk with cells of the immune system [7–10]. Therefore, different inflammation status might lead to distinct immunomodulatory responses. This is a fundamental concept that could determine future clinical settings: treatment dose, timing, and frequency of administration, as well as the choice of the source of MSCs. 2. MSC-Mediated In Vitro Immunosuppression The ability of MSCs to modulate several processes of the immune
References
[1]
A. J. Friedenstein, U. F. Deriglasova, N. N. Kulagina et al., “Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method,” Experimental Hematology, vol. 2, no. 2, pp. 83–92, 1974.
[2]
M. F. Pittenger, “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999.
[3]
M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006.
[4]
X. Chen, M. A. Armstrong, and G. Li, “Mesenchymal stem cells in immunoregulation,” Immunology and Cell Biology, vol. 84, no. 5, pp. 413–421, 2006.
[5]
F. Dazzi and M. Krampera, “Mesenchymal stem cells and autoimmune diseases,” Best Practice and Research: Clinical Haematology, vol. 24, no. 1, pp. 49–57, 2011.
[6]
M. Krampera, “Mesenchymal stromal cells: more than inhibitory cells,” Leukemia, vol. 25, no. 4, pp. 565–566, 2011.
[7]
O. Delarosa, E. Lombardo, A. Beraza et al., “Requirement of IFN-γ-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells,” Tissue Engineering A, vol. 15, no. 10, pp. 2795–2806, 2009.
[8]
K. English, F. P. Barry, C. P. Field-Corbett, and B. P. Mahon, “IFN-γ and TNF-α differentially regulate immunomodulation by murine mesenchymal stem cells,” Immunology Letters, vol. 110, no. 2, pp. 91–100, 2007.
[9]
M. Krampera, “Mesenchymal stromal cell licensing: a multistep process,” Leukemia, vol. 25, no. 9, pp. 1408–1414, 2011.
[10]
G. Ren, L. Zhang, X. Zhao et al., “Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide,” Cell Stem Cell, vol. 2, no. 2, pp. 141–150, 2008.
[11]
K. Le Blanc, L. Tammik, B. Sundberg, S. E. Haynesworth, and O. Ringdén, “Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex,” Scandinavian Journal of Immunology, vol. 57, no. 1, pp. 11–20, 2003.
[12]
M. D. Nicola, C. Carlo-Stella, M. Magni et al., “Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli,” Blood, vol. 99, no. 10, pp. 3838–3843, 2002.
[13]
S. Glennie, I. Soeiro, P. J. Dyson, E. W. Lam, and F. Dazzi, “Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells,” Blood, vol. 105, no. 7, pp. 2821–2827, 2005.
[14]
P. Hwu, M. X. Du, R. Lapointe, M. Do, M. W. Taylor, and H. A. Young, “Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation,” Journal of Immunology, vol. 164, no. 7, pp. 3596–3599, 2000.
[15]
D. H. Munn, E. Shafizadeh, J. T. Attwood, I. Bondarev, A. Pashine, and A. L. Mellor, “Inhibition of T cell proliferation by macrophage tryptophan catabolism,” Journal of Experimental Medicine, vol. 189, no. 9, pp. 1363–1372, 1999.
[16]
J. M. Ryan, F. Barry, J. M. Murphy, and B. P. Mahon, “Interferon-γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells,” Clinical and Experimental Immunology, vol. 149, no. 2, pp. 353–363, 2007.
[17]
R. Meisel, A. Zibert, M. Laryea, U. G?bel, W. D?ubener, and D. Dilloo, “Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation,” Blood, vol. 103, no. 12, pp. 4619–4621, 2004.
[18]
D. Sakata, C. Yao, and S. Narumiya, “Prostaglandin E2, an immunoactivator,” Journal of Pharmacological Sciences, vol. 112, no. 1, pp. 1–5, 2010.
[19]
S. Aggarwal and M. F. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005.
[20]
M. E. Groh, B. Maitra, E. Szekely, and O. N. Ko?, “Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells,” Experimental Hematology, vol. 33, no. 8, pp. 928–934, 2005.
[21]
K. Le Blanc, I. Rasmusson, C. G?therstr?m et al., “Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes,” Scandinavian Journal of Immunology, vol. 60, no. 3, pp. 307–315, 2004.
[22]
L. Sun, K. Akiyama, H. Zhang et al., “Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans,” Stem Cells, vol. 27, no. 6, pp. 1421–1432, 2009.
[23]
G. Almeida-Porada, C. D. Porada, N. Tran, and E. D. Zanjani, “Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation,” Blood, vol. 95, no. 11, pp. 3620–3627, 2000.
[24]
A. Bartholomew, C. Sturgeon, M. Siatskas et al., “Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo,” Experimental Hematology, vol. 30, no. 1, pp. 42–48, 2002.
[25]
Y. Li, J. Chen, X. G. Chen et al., “Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery,” Neurology, vol. 59, no. 4, pp. 514–523, 2002.
[26]
F. T?gel, Z. Hu, K. Weiss, J. Isaac, C. Lange, and C. Westenfelder, “Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms,” The American Journal of Physiology—Renal Physiology, vol. 289, no. 1, pp. F31–F42, 2005.
[27]
R. H. Lee, M. J. Seo, R. L. Reger et al., “Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17438–17443, 2006.
[28]
V. S. Urbán, J. Kiss, J. Kovács et al., “Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes,” Stem Cells, vol. 26, no. 1, pp. 244–253, 2008.
[29]
Y. Ding, D. Xu, G. Feng, A. Bushell, R. J. Muschel, and K. J. Wood, “Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9,” Diabetes, vol. 58, no. 8, pp. 1797–1806, 2009.
[30]
A. Augello, R. Tasso, S. M. Negrini, R. Cancedda, and G. Pennesi, “Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis,” Arthritis and Rheumatism, vol. 56, no. 4, pp. 1175–1186, 2007.
[31]
Y. Inoue, A. Iriyama, S. Ueno et al., “Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration,” Experimental Eye Research, vol. 85, no. 2, pp. 234–241, 2007.
[32]
L. A. Ortiz, M. DuTreil, C. Fattman et al., “Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 26, pp. 11002–11007, 2007.
[33]
N. Gupta, X. Su, B. Popov, J. W. Lee, V. Serikov, and M. A. Matthay, “Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice,” Journal of Immunology, vol. 179, no. 3, pp. 1855–1863, 2007.
[34]
B. Parekkadan, D. van Poll, K. Suganuma et al., “Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure,” PLoS ONE, vol. 2, no. 9, article e941, 2007.
[35]
E. Gerdoni, B. Gallo, S. Casazza et al., “Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis,” Annals of Neurology, vol. 61, no. 3, pp. 219–227, 2007.
[36]
M. Mirotsou, Z. Zhang, A. Deb et al., “Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 5, pp. 1643–1648, 2007.
[37]
Q. Zhang, S. Shi, Y. Liu et al., “Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis,” Journal of Immunology, vol. 183, no. 12, pp. 7787–7798, 2009.
[38]
A. Gonzalez, V. Rebmann, J. LeMaoult, P. A. Horn, E. D. Carosella, and E. Alegre, “The immunosuppressive molecule HLA-G and its clinical implications,” Critical Reviews in Clinical Laboratory Sciences, vol. 49, no. 3, pp. 63–84, 2012.
[39]
A. Nasef, N. Mathieu, A. Chapel et al., “Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G,” Transplantation, vol. 84, no. 2, pp. 231–237, 2007.
[40]
Z. Selmani, A. Naji, E. Gaiffe et al., “HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells,” Transplantation, vol. 87, no. 9, pp. S62–S66, 2009.
[41]
Z. Selmani, A. Naji, I. Zidi et al., “Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+ CD25highFOXP3+ regulatory T cells,” Stem Cells, vol. 26, no. 1, pp. 212–222, 2008.
[42]
P. A. Sotiropoulou, S. A. Perez, A. D. Gritzapis, C. N. Baxevanis, and M. Papamichail, “Interactions between human mesenchymal stem cells and natural killer cells,” Stem Cells, vol. 24, no. 1, pp. 74–85, 2006.
[43]
I. Rasmusson, O. Ringdén, B. Sundberg, and K. Le Blanc, “Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells,” Transplantation, vol. 76, no. 8, pp. 1208–1213, 2003.
[44]
G. M. Spaggiari, A. Capobianco, S. Becchetti, M. C. Mingari, and L. Moretta, “Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation,” Blood, vol. 107, no. 4, pp. 1484–1490, 2006.
[45]
A. Corcione, F. Benvenuto, E. Ferretti et al., “Human mesenchymal stem cells modulate B-cell functions,” Blood, vol. 107, no. 1, pp. 367–372, 2006.
[46]
I. Rasmusson, K. Le Blanc, B. Sundberg, and O. Ringdén, “Mesenchymal stem cells stimulate antibody secretion in human B cells,” Scandinavian Journal of Immunology, vol. 65, no. 4, pp. 336–343, 2007.
[47]
S. Tabera, J. A. Pérez-Simón, M. Díez-Campelo et al., “The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes,” Haematologica, vol. 93, no. 9, pp. 1301–1309, 2008.
[48]
E. Traggiai, S. Volpi, F. Schena et al., “Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients,” Stem Cells, vol. 26, no. 2, pp. 562–569, 2008.
[49]
G. M. Spaggiari, H. Abdelrazik, F. Becchetti, and L. Moretta, “MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2,” Blood, vol. 113, no. 26, pp. 6576–6583, 2009.
[50]
W. Zhang, W. Ge, C. Li et al., “Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells,” Stem Cells and Development, vol. 13, no. 3, pp. 263–271, 2004.
[51]
A. J. Nauta, A. B. Kruisselbrink, E. Lurvink, R. Willemze, and W. E. Fibbe, “Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells,” Journal of Immunology, vol. 177, no. 4, pp. 2080–2087, 2006.
[52]
S. Brandau, M. Jakob, H. Hemeda et al., “Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge,” Journal of Leukocyte Biology, vol. 88, no. 5, pp. 1005–1015, 2010.
[53]
M. A. Cassatella, F. Mosna, A. Micheletti et al., “Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils,” Stem Cells, vol. 29, no. 6, pp. 1001–1011, 2011.
[54]
L. Raffaghello, G. Bianchi, M. Bertolotto et al., “Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche,” Stem Cells, vol. 26, no. 1, pp. 151–162, 2008.
[55]
D. G. Phinney and D. J. Prockop, “Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views,” Stem Cells, vol. 25, no. 11, pp. 2896–2902, 2007.
[56]
J. S. Lee, J. M. Hong, G. J. Moon, P. H. Lee, Y. H. Ahn, and O. Y. Bang, “A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke,” Stem Cells, vol. 28, no. 6, pp. 1099–1106, 2010.
[57]
J. Onken, D. Gallup, and J. Hanson, “Successful outpatient treatment of refractory Crohn's disease using adult mesenchymal stem cells,” in Proceedings of the American College of Gastroenterology Annual Meeting, pp. 23–25, 2006.
[58]
M. Duijvestein, A. C. W. Vos, H. Roelofs et al., “Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study,” Gut, vol. 59, no. 12, pp. 1662–1669, 2010.
[59]
D. García-Olmo, M. García-Arranz, D. Herreros, I. Pascual, C. Peiro, and J. A. Rodríguez-Montes, “A phase I clinical trial of the treatment of crohn's fistula by adipose mesenchymal stem cell transplantation,” Diseases of the Colon and Rectum, vol. 48, no. 7, pp. 1416–1423, 2005.
[60]
D. Garcia-Olmo, D. Herreros, I. Pascual et al., “Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial,” Diseases of the Colon and Rectum, vol. 52, no. 1, pp. 79–86, 2009.
[61]
M. D. Herreros, M. Garcia-Arranz, H. Guadalajara, P. De-La-Quintana, and D. Garcia-Olmo, “Autologous expanded adipose-derived stem cells for the treatment of complex cryptoglandular perianal fistulas: a phase III randomized clinical trial (FATT 1: fistula advanced therapy trial 1) and long-term evaluation,” Diseases of the Colon and Rectum, vol. 55, no. 7, pp. 762–772, 2012.
[62]
B. Yamout, R. Hourani, H. Salti et al., “Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study,” Journal of Neuroimmunology, vol. 227, no. 1-2, pp. 185–189, 2010.
[63]
P. Connick, M. Kolappan, C. Crawley et al., “Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study,” The Lancet Neurology, vol. 11, no. 2, pp. 150–156, 2012.
[64]
D. Woodbury, E. J. Schwarz, D. J. Prockop, and I. B. Black, “Adult rat and human bone marrow stromal cells differentiate into neurons,” Journal of Neuroscience Research, vol. 61, no. 4, pp. 364–370, 2000.
[65]
C. Krabbe, J. Zimmer, and M. Meyer, “Neural transdifferentiation of mesenchymal stem cells—a critical review,” APMIS, vol. 113, no. 11-12, pp. 831–844, 2005.
[66]
I. Kassis, A. Vaknin-Dembinsky, and D. Karussis, “Bone marrow mesenchymal stem cells: agents of immunomodulation and neuroprotection,” Current Stem Cell Research and Therapy, vol. 6, no. 1, pp. 63–68, 2011.
[67]
L. Mazzini, I. Ferrero, V. Luparello et al., “Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial,” Experimental Neurology, vol. 223, no. 1, pp. 229–237, 2010.
[68]
D. Karussis, C. Karageorgiou, A. Vaknin-Dembinsky et al., “Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis,” Archives of Neurology, vol. 67, no. 10, pp. 1187–1194, 2010.
[69]
K. Le Blanc, I. Rasmusson, B. Sundberg et al., “Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells,” The Lancet, vol. 363, no. 9419, pp. 1439–1441, 2004.
[70]
J. Y. Cahn, J. P. Klein, S. J. Lee et al., “Prospective evaluation of 2 acute graft-versus-host (GVHD) grading systems: a joint Société Fran?aise de Greffe de Mo?lle et Th?rapie Cellulaire (SFGM-TC), Dana Farber Cancer Institute (DFCI), and international bone marrow transplant registry (IBMTR) prospective study,” Blood, vol. 106, no. 4, pp. 1495–1500, 2005.
[71]
V. K. Prasad, K. G. Lucas, G. I. Kleiner et al., “Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study,” Biology of Blood and Marrow Transplantation, vol. 17, no. 4, pp. 534–541, 2011.
[72]
P. Kebriaei, L. Isola, E. Bahceci et al., “Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease,” Biology of Blood and Marrow Transplantation, vol. 15, no. 7, pp. 804–811, 2009.
[73]
C. R. Mills, “Osiris therapeutics announces preliminary results for prochymal phase III GVHD trials,” 2009.
[74]
D. Cyranoski, “Canada approves stem cell product,” Nature Biotechnology, vol. 30, pp. 571–571, 2012.
[75]
K. Le Blanc, F. Frassoni, L. Ball et al., “Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study,” The Lancet, vol. 371, no. 9624, pp. 1579–1586, 2008.
[76]
Y. Peng, M. Ke, L. Xu et al., “Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study,” Transplantation, vol. 95, no. 1, pp. 161–168, 2013.
[77]
J. Tan, W. Wu, X. Xu et al., “Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial,” The Journal of the American Medical Association, vol. 307, no. 11, pp. 1169–1177, 2012.
[78]
M. Krampera, L. Cosmi, R. Angeli et al., “Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells,” Stem Cells, vol. 24, no. 2, pp. 386–398, 2006.
[79]
M. Duijvestein, M. E. Wildenberg, M. M. Welling et al., “Pretreatment with interferon-γ enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis,” Stem Cells, vol. 29, no. 10, pp. 1549–1558, 2011.
[80]
J. L. Chan, K. C. Tang, A. P. Patel et al., “Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ,” Blood, vol. 107, no. 12, pp. 4817–4824, 2006.
[81]
R. Carrero, I. Cerrada, E. Lledó et al., “IL1β induces mesenchymal stem cells migration and leucocyte chemotaxis through NF-κB,” Stem Cell Reviews and Reports, vol. 8, no. 3, pp. 905–916, 2012.
[82]
A. Zhang, Y. Wang, Z. Ye, H. Xie, L. Zhou, and S. Zheng, “Mechanism of TNF-α-induced migration and hepatocyte growth factor production in human mesenchymal stem cells,” Journal of Cellular Biochemistry, vol. 111, no. 2, pp. 469–475, 2010.
[83]
J. A. Miettinen, M. Pietil?, R. J. Salonen et al., “Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture,” Experimental Cell Research, vol. 317, no. 6, pp. 791–801, 2011.
[84]
W. B?cker, D. Docheva, W. C. Prall et al., “IKK-2 is required for TNF-α-induced invasion and proliferation of human mesenchymal stem cells,” Journal of Molecular Medicine, vol. 86, no. 10, pp. 1183–1192, 2008.
[85]
A. Uccelli, L. Moretta, and V. Pistoia, “Mesenchymal stem cells in health and disease,” Nature Reviews Immunology, vol. 8, no. 9, pp. 726–736, 2008.