Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity. 1. Introduction It is now estimated that 780 million litres of oil entered the Gulf of Mexico waters in the months following the sinking of the Deepwater Horizon platform on April 22, 2010 [1], affecting an area of over 75 000?km2 (Figure 1). After 7 months of clean up activity, it was considered that approximately 41% of the oil had evaporated, dissolved, or dispersed by natural means, 33% was captured, chemically dispersed, burned, or skimmed during remediation efforts, and 26% remained as a potential hazard [1]. British Petroleum’s (BP) principle remediation effort used up to 3 000 000 litres of the dispersant Corexit (EC9500A and EC9527A), much of which was injected at 1500?m depth, to disperse the spill and reduce the amount reaching the surface [2]. Application of dispersants is controversial and in some environments has been shown to inhibit the activity of hydrocarbon-degrading bacteria [3], the primary mechanism by which oil eventually leaves the ecosystem. Figure 1: NASA’s Terra satellite image of the Gulf of Mexico oil spill (light grey area) on May 17th, 2010, at 12:40?PM. The point marks the site of the Deepwater Horizon drilling platform that sank on April 20th, 2010 (source
References
[1]
TFIS, The Federal Interagency Solutions Group: Oil Budget Calculator Science and Engineering Team. Oil Budget Calculator Technical Documentation, 2010, http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ-Print_111110.pdf.
[2]
R. M. Atlas and T. C. Hazen, “Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history,” Environmental Science and Technology, vol. 45, no. 16, pp. 6709–6715, 2011.
[3]
L. J. Hamdan and P. A. Fulmer, “Effects of COREXIT EC9500A on bacteria from a beach oiled by the Deepwater Horizon spill,” Aquatic Microbial Ecology, vol. 63, no. 2, pp. 101–109, 2011.
[4]
J. R. Bragg, R. C. Prince, E. J. Harner, and R. M. Atlas, “Effectiveness of bioremediation for the Exxon Valdez oil spill,” Nature, vol. 368, no. 6470, pp. 413–418, 1994.
[5]
R. M. Atlas, “Petroleum biodegradation and oil spill bioremediation,” Marine Pollution Bulletin, vol. 31, no. 4–12, pp. 178–182, 1995.
[6]
R. P. J. Swannell, K. Lee, and M. Mcdonagh, “Field evaluations of marine oil spill bioremediation,” Microbiological Reviews, vol. 60, no. 2, pp. 342–365, 1996.
[7]
B. N. Orcutt, S. B. Joye, S. Kleindienst et al., “Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments,” Deep-Sea Research Part II, vol. 57, no. 21–23, pp. 2008–2021, 2010.
[8]
J. E. Kostka, O. Prakash, W. A. Overholt et al., “Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill,” Applied and Environmental Microbiology, vol. 77, no. 22, pp. 7962–7974, 2011.
[9]
R. C. Prince, “Petroleum spill bioremediation in marine environments,” Critical Reviews in Microbiology, vol. 19, no. 4, pp. 217–242, 1993.
[10]
A. D. Venosa, P. Campo, and M. T. Suidan, “Biodegradability of lingering crude oil 19 years after the Exxon Valdez oil Spill,” Environmental Science and Technology, vol. 44, no. 19, pp. 7613–7621, 2010.
[11]
O. Koren, V. Knezevic, E. Z. Ron, and E. Rosenberg, “Petroleum pollution bioremediation using water-insoluble uric acid as the nitrogen source,” Applied and Environmental Microbiology, vol. 69, no. 10, pp. 6337–6339, 2003.
[12]
P. H. Pritchard, J. G. Mueller, J. C. Rogers, F. V. Kremer, and J. A. Glaser, “Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska,” Biodegradation, vol. 3, no. 2-3, pp. 315–335, 1992.
[13]
P. T. Tate, W. S. Shin, J. H. Pardue, and W. A. Jackson, “Bioremediation of an experimental oil spill in a coastal Louisiana salt marsh,” Water, Air, and Soil Pollution, vol. 223, no. 3, pp. 1115–1123, 2012.
[14]
B. R. Edwards, C. M. Reddy, R. Camilli, C. A. Carmichael, K. Longnecker, and B. A. S. Van Mooy, “Rapid microbial respiration of oil from the Deepwater Horizon spill in offshore surface waters of the Gulf of Mexico,” Environmental Research Letters, vol. 6, no. 3, Article ID 035301, 2011.
[15]
R. D. E. Bronchart, J. Cadron, A. Charlier, A. A. R. Gillot, and W. Verstraete, “A new approach in enhanced biodegradation of spilled oil: development of an oil dispersant containing oleophilic nutrients,” in Proceedings of the Oil Spill Conference (Prevention, Behavior, Control, Cleanup), J. O. Ludwigson, Ed., vol. 4385, pp. 453–462, The American Petroleum Institute Publication, Los Angeles, Calif, USA, February 1985.
[16]
H. H. Murray, “Traditional and new applications for kaolin, smectite, and palygorskite: a general overview,” Applied Clay Science, vol. 17, no. 5-6, pp. 207–221, 2000.
[17]
H. Van Olphen and J. J. Fripat, Data Handbook For Clay Materials and Other Non-Metallic Minerals, Pergamon Press, New York, NY, USA, 1979.
[18]
T. Grygar, J. Děde?ek, and D. Hradil, “Analysis of low concentration of free ferric oxides in clays by VIS diffuse reflectance spectroscopy and voltammetry,” Geologica Carpathica, vol. 53, no. 2, pp. 71–77, 2002.
[19]
E. Galan, “Properties and applications of palygorskite-sepiolite clays,” Clay Minerals, vol. 31, no. 4, pp. 443–453, 1996.
[20]
A. R. Mermut and A. F. Cano, “Baseline studies of the clay minerals society source clays: chemical analyses of major elements,” Clays and Clay Minerals, vol. 49, no. 5, pp. 381–386, 2001.
[21]
R. L. Portier and L. M. Basirico, “Laboratory screening of commercial bioremediation agents for the Deepwater Horizon spill response,” Final Report Submitted to RRT-4 and RRT-6 Regional Response Teams, 107 pp., 2011.
[22]
J. Iqbal, R. J. Portier, and D. Gisclair, “Aspects of petrochemical pollution in coastal Louisiana, USA,” Marine Pollution Bulletin, vol. 54, no. 6, pp. 792–797, 2007.
[23]
J. Iqbal, D. Gisclair, D. J. McMillin, and R. J. Portier, “Aspects of petrochemical pollution in southeastern Louisiana (USA): Pre-Katrina background and source characterization,” Environmental Toxicology and Chemistry, vol. 26, no. 9, pp. 2001–2009, 2007.
[24]
J. E. Kostka, O. Prakash, W. A. Overholt et al., “Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill,” Applied and Environmental Microbiology, vol. 77, no. 22, pp. 7962–7974, 2011.
[25]
T. C. Hazen, E. A. Dubinsky, T. Z. DeSantis et al., “Deep-sea oil plume enriches indigenous oil-degrading bacteria,” Science, vol. 330, no. 6001, pp. 204–208, 2010.
[26]
T. K. Vyas and B. P. Dave, “Effect of addition of nitrogen, phosphorus and potassium fertilizers on biodegradation of crude oil by marine bacteria,” Indian Journal of Marine Sciences, vol. 39, no. 1, pp. 143–150, 2010.
[27]
E. Briand, O. Pringault, S. Jacquet, and J. P. Torréton, “The use of oxygen microprobes to measure bacterial respiration for determining bacterioplankton growth efficiency,” Limnology and Oceanography, vol. 2, pp. 406–416, 2004.
I. C. T. Nisbet and P. K. LaGoy, “Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs),” Regulatory Toxicology and Pharmacology, vol. 16, no. 3, pp. 290–300, 1992.
[31]
J. L. Durant, W. F. Busby Jr., A. L. Lafleur, B. W. Penman, and C. L. Crespi, “Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols,” Mutation Research, vol. 371, no. 3-4, pp. 123–157, 1996.
[32]
T. Fenchel and T. H. Blackburn, Bacterial and Mineral Cycling, Academic Press, London, UK, 1979.
[33]
L. N. Warr, J. N. Perdrial, M.-C. Lett, A. Heinrich-Salmeron, and M. Khodja, “Clay mineral-enhanced bioremediation of marine oil pollution,” Applied Clay Science, vol. 46, no. 4, pp. 337–345, 2009.
[34]
P. A. Meyers and J. G. Qujnn, “Association of hydrocarbons and mineral particles in saline solution,” Nature, vol. 244, no. 5410, pp. 23–24, 1973.
[35]
A. M. Weise, C. Nalewajko, and K. Lee, “Oil-mineral fine interactions facilitate oil biodegradation in seawater,” Environmental Technology, vol. 20, no. 8, pp. 811–824, 1999.
[36]
E. H. Owens and K. Lee, “Interaction of oil and mineral fines on shorelines: review and assessment,” Marine Pollution Bulletin, vol. 47, no. 9–12, pp. 397–405, 2003.
[37]
C. R. Usher, A. E. Michel, and V. H. Grassian, “Reactions on Mineral Dust,” Chemical Reviews, vol. 103, no. 12, pp. 4883–4939, 2003.
[38]
J. R. Bragg and S. H. Yang, “Clay-oil flocculation and its role in natural cleansing in Prince William Sound following the Exxon Valdez Oil Spill,” in Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters, G. Peter Wells, N. James Butler, and S. Jane Hughes, Eds., pp. 178–214, American Society for Testing and Materials, Philadelphia, Pa, USA, 1995.
[39]
USGS, United States Geological Survey, Mineral commodity summaries, 198 pp., 2012, http://minerals.usgs.gov/minerals/pubs/mcs/2012/mcs2012.pdf.