Volcanic regions contain a variety of environments suitable for extremophiles. This study was focused on assessing and exploiting the prokaryotic diversity of two microbial communities derived from different Kamchatkian thermal springs by metagenomic approaches. Samples were taken from a thermoacidophilic spring near the Mutnovsky Volcano and from a thermophilic spring in the Uzon Caldera. Environmental DNA for metagenomic analysis was isolated from collected sediment samples by direct cell lysis. The prokaryotic community composition was examined by analysis of archaeal and bacterial 16S rRNA genes. A total number of 1235 16S rRNA gene sequences were obtained and used for taxonomic classification. Most abundant in the samples were members of Thaumarchaeota, Thermotogae, and Proteobacteria. The Mutnovsky hot spring was dominated by the Terrestrial Hot Spring Group, Kosmotoga, and Acidithiobacillus. The Uzon Caldera was dominated by uncultured members of the Miscellaneous Crenarchaeotic Group and Enterobacteriaceae. The remaining 16S rRNA gene sequences belonged to the Aquificae, Dictyoglomi, Euryarchaeota, Korarchaeota, Thermodesulfobacteria, Firmicutes, and some potential new phyla. In addition, the recovered DNA was used for generation of metagenomic libraries, which were subsequently mined for genes encoding lipolytic and proteolytic enzymes. Three novel genes conferring lipolytic and one gene conferring proteolytic activity were identified. 1. Introduction Sites of volcanic activity can be found all over the world and even under the sea. Volcanic regions provide a variety of different environments for extremophilic archaeal and bacterial microorganisms. Well-known examples of such extreme environments are terrestrial surface hot springs. With respect to geographical, physical, environmental, and chemical characteristics, hot springs are unique sites for extremophilic microorganisms [1–3]. Extremophiles inhabiting hot springs are considered to be the closest living descendants of the earliest life forms on Earth [4, 5]. Therefore, these springs provide insights into the origin and evolution of life. In addition, thermophiles and hyperthermophiles produce a variety of hydrolytic enzymes such as lipases, glycosidases, peptidases and other biomolecules, which are of industrial interest [6–8]. For example, Hotta et al. [9] found an extremely stable carboxylesterase in the hyperthermophilic archaeon Pyrobaculum calidifontis VA1, and Arpigny et al. [10] identified a novel heat-stable lipolytic enzyme in Sulfolobus acidocaldarius DSM 639. Especially in
References
[1]
P. Hugenholtz, C. Pitulle, K. L. Hershberger, and N. R. Pace, “Novel division level bacterial diversity in a Yellowstone hot spring,” Journal of Bacteriology, vol. 180, no. 2, pp. 366–376, 1998.
[2]
V. T. Marteinsson, S. Hauksdóttir, C. F. V. Hobel, H. Kristmannsdóttir, G. O. Hreggvidsson, and J. K. Kristjánsson, “Phylogenetic diversity analysis of subterranean hot springs in Iceland,” Applied and Environmental Microbiology, vol. 67, no. 9, pp. 4242–4248, 2001.
[3]
T. Kvist, B. K. Ahring, and P. Westermann, “Archaeal diversity in Icelandic hot springs,” FEMS Microbiology Ecology, vol. 59, no. 1, pp. 71–80, 2007.
[4]
G. J. Olsen, C. R. Woese, and R. Overbeek, “The winds of (evolutionary) change: breathing new life into microbiology,” Journal of Bacteriology, vol. 176, no. 1, pp. 1–6, 1994.
[5]
C. R. Woese, O. Kandler, and M. L. Wheelis, “Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 12, pp. 4576–4579, 1990.
[6]
J. Handelsman, “Metagenomics: application of genomics to uncultured microorganisms,” Microbiology and Molecular Biology Reviews, vol. 68, no. 4, pp. 669–685, 2004.
[7]
R. Daniel, “The soil metagenome—a rich resource for the discovery of novel natural products,” Current Opinion in Biotechnology, vol. 15, no. 3, pp. 199–204, 2004.
[8]
W. R. Streit, R. Daniel, and K. E. Jaeger, “Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms,” Current Opinion in Biotechnology, vol. 15, no. 4, pp. 285–290, 2004.
[9]
Y. Hotta, S. Ezaki, H. Atomi, and T. Imanaka, “Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon,” Applied and Environmental Microbiology, vol. 68, no. 8, pp. 3925–3931, 2002.
[10]
J. L. Arpigny, D. Jendrossek, and K. E. Jaeger, “A novel heat-stable lipolytic enzyme from Sulfolobus acidocaldarius DSM 639 displaying similarity to polyhydroxyalkanoate depolymerases,” FEMS Microbiology Letters, vol. 167, no. 1, pp. 69–73, 1998.
[11]
R. I. Amann, W. Ludwig, and K. H. Schleifer, “Phylogenetic identification and in situ detection of individual microbial cells without cultivation,” Microbiological Reviews, vol. 59, no. 1, pp. 143–169, 1995.
[12]
P. Lorenz, K. Liebeton, F. Niehaus, and J. Eck, “Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space,” Current Opinion in Biotechnology, vol. 13, no. 6, pp. 572–577, 2002.
[13]
C. Elend, C. Schmeisser, C. Leggewie et al., “Isolation and biochemical characterization of two novel metagenome-derived esterases,” Applied and Environmental Microbiology, vol. 72, no. 5, pp. 3637–3645, 2006.
[14]
C. Elend, C. Schmeisser, H. Hoebenreich, H. L. Steele, and W. R. Streit, “Isolation and characterization of a metagenome-derived and cold-active lipase with high stereospecificity for (R)-ibuprofen esters,” Journal of Biotechnology, vol. 130, no. 4, pp. 370–377, 2007.
[15]
C. Simon, A. Wiezer, A. W. Strittmatter, and R. Daniel, “Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome,” Applied and Environmental Microbiology, vol. 75, no. 23, pp. 7519–7526, 2009.
[16]
D. R. Meyer-Dombard, E. L. Shock, and J. P. Amend, “Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA,” Geobiology, vol. 3, no. 3, pp. 211–227, 2005.
[17]
J. Zhou, M. A. Bruns, and J. M. Tiedje, “DNA recovery from soils of diverse composition,” Applied and Environmental Microbiology, vol. 62, no. 2, pp. 316–322, 1996.
[18]
G. Muyzer, A. Teske, C. O. Wirsen, and H. W. Jannasch, “Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments,” Archives of Microbiology, vol. 164, no. 3, pp. 165–172, 1995.
[19]
A. Wilmotte, G. Van Der Auwera, and R. De Wachter, “Structure of the 16 S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (Mastigocladus laminosus HTF) strain PCC7518, and phylogenetic analysis,” FEBS Letters, vol. 317, no. 1-2, pp. 96–100, 1993.
[20]
T. V. Kolganova, B. B. Kuznetsov, and T. P. Turova, “Designing and testing oligonucleotide primers for amplification and sequencing of archaeal 16S rRNA genes,” Mikrobiologiya, vol. 71, no. 2, pp. 283–286, 2002.
[21]
T. Itoh, K. I. Suzuki, and T. Nakase, “Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 4, pp. 1097–1104, 2002.
[22]
E. F. DeLong, “Archaea in coastal marine environments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5685–5689, 1992.
[23]
J. G. Caporaso, J. Kuczynski, J. Stombaugh et al., “QIIME allows analysis of high-throughput community sequencing data,” Nature Methods, vol. 7, no. 5, pp. 335–336, 2010.
[24]
R. Staden, K. F. Beal, and J. K. Bonfield, “The Staden package, 1998,” Methods in Molecular Biology, vol. 132, pp. 115–130, 2000.
[25]
K. E. Ashelford, N. A. Chuzhanova, J. C. Fry, A. J. Jones, and A. J. Weightman, “New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras,” Applied and Environmental Microbiology, vol. 72, no. 9, pp. 5734–5741, 2006.
[26]
T. Huber, G. Faulkner, and P. Hugenholtz, “Bellerophon: a program to detect chimeric sequences in multiple sequence alignments,” Bioinformatics, vol. 20, no. 14, pp. 2317–2319, 2004.
[27]
J. R. Cole, B. Chai, T. L. Marsh et al., “The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy,” Nucleic Acids Research, vol. 31, no. 1, pp. 442–443, 2003.
[28]
R. C. Edgar, “Search and clustering orders of magnitude faster than BLAST,” Bioinformatics, vol. 26, no. 19, Article ID btq461, pp. 2460–2461, 2010.
[29]
C. Camacho, G. Coulouris, V. Avagyan et al., “BLAST+: architecture and applications,” BMC Bioinformatics, vol. 10, article 421, 2009.
[30]
E. Pruesse, C. Quast, K. Knittel et al., “SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB,” Nucleic Acids Research, vol. 35, no. 21, pp. 7188–7196, 2007.
[31]
C. E. Shannon, “A mathematical theory of communication,” SIGMOBILE Mobile Computing and Communications Review, vol. 5, no. 1, pp. 3–55, 2001.
[32]
A. Chao and J. Bunge, “Estimating the number of species in a stochastic abundance model,” Biometrics, vol. 58, no. 3, pp. 531–539, 2002.
[33]
W. Ludwig, O. Strunk, R. Westram et al., “ARB: a software environment for sequence data,” Nucleic Acids Research, vol. 32, no. 4, pp. 1363–1371, 2004.
[34]
C. Simon, J. Herath, S. Rockstroh, and R. Daniel, “Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice,” Applied and Environmental Microbiology, vol. 75, no. 9, pp. 2964–2968, 2009.
[35]
A. Henne, R. A. Schmitz, M. B?meke, G. Gottschalk, and R. Daniel, “Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli,” Applied and Environmental Microbiology, vol. 66, no. 7, pp. 3113–3116, 2000.
[36]
T. Waschkowitz, S. Rockstroh, and R. Daniel, “Isolation and characterization of metalloproteases with a novel domain structure by construction and screening of metagenomic libraries,” Applied and Environmental Microbiology, vol. 75, no. 8, pp. 2506–2516, 2009.
[37]
K. Rutherford, J. Parkhill, J. Crook et al., “Artemis: sequence visualization and annotation,” Bioinformatics, vol. 16, no. 10, pp. 944–945, 2000.
[38]
U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970.
[39]
D. Tillett and B. A. Neilan, “Enzyme-free cloning: a rapid method to clone PCR products independent of vector restriction enzyme sites,” Nucleic Acids Research, vol. 27, no. 19, pp. e26–e28, 1999.
[40]
K. Rashamuse, T. Ronneburg, F. Hennessy et al., “Discovery of a novel carboxylesterase through functional screening of a pre-enriched environmental library,” Journal of Applied Microbiology, vol. 106, no. 5, pp. 1532–1539, 2009.
[41]
R Development Core Team, R: a Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2005.
[42]
S. Banerji and A. Flieger, “Patatin-like proteins: a new family of lipolytic enzymes present in Bacteria?” Microbiology, vol. 150, no. 3, pp. 522–525, 2004.
[43]
J. L. Arpigny and K. E. Jaeger, “Bacterial lipolytic enzymes: classification and properties,” Biochemical Journal, vol. 343, part 1, pp. 177–183, 1999.
[44]
N. D. Rawlings, A. J. Barrett, and A. Bateman, “MEROPS: the peptidase database,” Nucleic Acids Research, vol. 38, supplement 1, pp. D227–D233, 2010.
[45]
I. V. Kublanov, S. K. Bidjieva, A. V. Mardanov, and E. A. Bonch-Osmolovskaya, “Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeon isolated from a Kamchatka hot spring,” International Journal of Systematic and Evolutionary Microbiology, vol. 59, no. 7, pp. 1743–1747, 2009.
[46]
C. R. Jackson, H. W. Langner, J. Donahoe-Christiansen, W. P. Inskeep, and T. R. McDermott, “Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring,” Environmental Microbiology, vol. 3, no. 8, pp. 532–542, 2001.
[47]
N. Byrne, M. Strous, V. Crépeau et al., “Presence and activity of anaerobic ammonium-oxidizing Bacteria at deep-sea hydrothermal vents,” ISME Journal, vol. 3, no. 1, pp. 117–123, 2009.
[48]
Q. Huang, C. Dong, R. Dong et al., “Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China,” Extremophiles, vol. 15, no. 5, pp. 549–563, 2011.
[49]
C. Brochier-Armanet, S. Gribaldo, and P. Forterre, “Spotlight on the Thaumarchaeota,” The ISME Journal, vol. 6, no. 2, pp. 227–230, 2012.
[50]
A. Spang, R. Hatzenpichler, C. Brochier-Armanet et al., “Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota,” Trends in Microbiology, vol. 18, no. 8, pp. 331–340, 2010.
[51]
S. M. Barns, C. F. Delwiche, J. D. Palmer, and N. R. Pace, “Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 17, pp. 9188–9193, 1996.
[52]
J. K. Rhee, D. G. Ahn, Y. G. Kim, and J. W. Oh, “New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library,” Applied and Environmental Microbiology, vol. 71, no. 2, pp. 817–825, 2005.
[53]
P. Tirawongsaroj, R. Sriprang, P. Harnpicharnchai et al., “Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library,” Journal of Biotechnology, vol. 133, no. 1, pp. 42–49, 2008.
[54]
X. Chu, H. He, C. Guo, and B. Sun, “Identification of two novel esterases from a marine metagenomic library derived from South China Sea,” Applied Microbiology and Biotechnology, vol. 80, no. 4, pp. 615–625, 2008.
[55]
V. Delorme, R. Dhouib, S. Canaan, F. Fotiadu, F. Carrière, and J. F. Cavalier, “Effects of surfactants on lipase structure, activity, and inhibition,” Pharmaceutical Research, vol. 28, no. 8, pp. 1831–1842, 2011.
[56]
S. Kocabiyik and B. Demirok, “Cloning and overexpression of a thermostable signal peptide peptidase (SppA) from Thermoplasma volcanium GSS1 in E. coli,” Biotechnology Journal, vol. 4, no. 7, pp. 1055–1065, 2009.
[57]
E. Burgess, J. Unrine, G. Mills, C. Romanek, and J. Wiegel, “Comparative geochemical and microbiological characterization of two thermal pools in the Uzon Caldera, Kamchatka, Russia,” Microbial Ecology, vol. 63, no. 3, pp. 471–489, 2012.
[58]
R. Cavicchioli, M. Z. DeMaere, and T. Thomas, “Metagenomic studies reveal the critical and wide-ranging ecological importance of uncultivated archaea: the role of ammonia oxidizers,” BioEssays, vol. 29, no. 1, pp. 11–14, 2007.
[59]
L. J. Reigstad, A. Richter, H. Daims, T. Urich, L. Schwark, and C. Schleper, “Nitrification in terrestrial hot springs of Iceland and Kamchatka,” FEMS Microbiology Ecology, vol. 64, no. 2, pp. 167–174, 2008.
[60]
M. Pester, C. Schleper, and M. Wagner, “The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology,” Current Opinion in Microbiology, vol. 14, no. 3, pp. 300–306, 2011.