全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Archaea  2013 

Crystal Structure of PAV1-137: A Protein from the Virus PAV1 That Infects Pyrococcus abyssi

DOI: 10.1155/2013/568053

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pyrococcus abyssi virus 1 (PAV1) was the first virus particle infecting a hyperthermophilic Euryarchaeota (Pyrococcus abyssi strain GE23) that has been isolated and characterized. It is lemon shaped and is decorated with a short fibered tail. PAV1 morphologically resembles the fusiform members of the family Fuselloviridae or the genus Salterprovirus. The 18?kb dsDNA genome of PAV1 contains 25 predicted genes, most of them of unknown function. To help assigning functions to these proteins, we have initiated structural studies of the PAV1 proteome. We determined the crystal structure of a putative protein of 137 residues (PAV1-137) at a resolution of 2.2??. The protein forms dimers both in solution and in the crystal. The fold of PAV1-137 is a four-α-helical bundle analogous to those found in some eukaryotic adhesion proteins such as focal adhesion kinase, suggesting that PAV1-137 is involved in protein-protein interactions. 1. Introduction The archaea domain is organized into two major phyla, the Crenarchaeota and the Euryarchaeota. The first phylum contains mainly the extremely thermophilic Sulfolobales, Desulfurococcales, and Thermoproteales. The vast majority of hyperthermophilic viruses were isolated from the Crenarchaeota infecting in particular the genera Sulfolobus, Thermoproteus, Acidianus, Pyrobaculum, Stygiolobus, and Aeropyrum [1, 2]. Their shapes are characterized by unusual morphologies very different from bacterialviruses and eukaryotic viruses. Genomic sequences were determined for some of these archaeal viruses and revealed a very high portion of ORFan genes [3]. Due to their exceptional morphological and genomic properties, they were assigned to eight novel viral families [1]. The Euryarchaeota phylum includes extreme halophiles, methanogens, and hyperthermophilic sulfur reducers (Thermococcales). Most of the viruses infecting this phylum are isolated from mesophilic hosts and are tailed viruses, whereas pleomorphic types are relatively rare [4]. The knowledge about archaeal viruses is still very limited and this is even more poignant for viruses that infect hyperthermophilic Euryarchaeota [5, 6]. To date, PAV1 and TPV1 (Thermococcus prieurii virus 1) are the only viruses isolated from cultivated marine hyperthermophilic euryarchaea. These spindle-shaped viruses are morphologically similar to the haloviruses of the genus Salterprovirus [7, 8] that infect extreme halophiles, and to crenarchaeal viruses assigned to the fusiform family Fuselloviridae [9], but they do not share any genomic properties. PAV1, isolated from Pyrococcus abyssi,

References

[1]  D. Prangishvili and R. A. Garrett, “Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses,” Biochemical Society Transactions, vol. 32, no. 2, pp. 204–208, 2004.
[2]  T. Mochizuki, Y. Sako, and D. Prangishvili, “Provirus induction in hyperthermophilic archaea: characterization of Aeropyrum pernix spindle-shaped virus 1 and Aeropyrum pernix ovoid virus 1,” Journal of Bacteriology, vol. 193, no. 19, pp. 5412–5419, 2011.
[3]  D. Prangishvili, R. A. Garrett, and E. V. Koonin, “Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life,” Virus Research, vol. 117, no. 1, pp. 52–67, 2006.
[4]  F. Eiserling, A. Pushkin, M. Gingery, and G. Bertani, “Bacteriophage-like particles associated with the gene transfer agent of Methanococcus voltae PS,” Journal of General Virology, vol. 80, no. 12, pp. 3305–3308, 1999.
[5]  H. W. Ackermann and D. Prangishvili, “Prokaryote viruses studied by electron microscopy,” Archives of Virology, vol. 157, no. 10, pp. 1843–1849, 2012.
[6]  C. Geslin, M. Le Romancer, M. Gaillard, G. Erauso, and D. Prieur, “Observation of virus-like particles in high temperature enrichment cultures from deep-sea hydrothermal vents,” Research in Microbiology, vol. 154, no. 4, pp. 303–307, 2003.
[7]  C. Bath, T. Cukalac, K. Porter, and M. L. Dyall-Smith, “His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus,” Virology, vol. 350, no. 1, pp. 228–239, 2006.
[8]  C. Bath and M. L. Dyall-smith, “His1, an archaeal virus of the Fuselloviridae family that infects Haloarcula hispanica,” Journal of Virology, vol. 72, no. 11, pp. 9392–9395, 1998.
[9]  P. Redder, X. Peng, K. Brügger et al., “Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism,” Environmental Microbiology, vol. 11, no. 11, pp. 2849–2862, 2009.
[10]  C. Geslin, M. Le Romancer, G. Erauso, M. Gaillard, G. Perrot, and D. Prieur, “PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, ‘Pyrococcus abyssi’,” Journal of Bacteriology, vol. 185, no. 13, pp. 3888–3894, 2003.
[11]  A. Gorlas, E. V. Koonin, N. Bienvenu, D. Prieur, and C. Geslin, “TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus,” Environmental Microbiology, vol. 14, no. 2, pp. 503–516, 2012.
[12]  A. Gorlas and C. Geslin, “A simple procedure to determine the infectivity and host range of viruses infecting anaerobic and hyperthermophilic microorganisms,” Extremophiles, 2013.
[13]  C. Geslin, M. Gaillard, D. Flament et al., “Analysis of the first genome of a hyperthermophilic marine virus-like particle, PAV1, isolated from Pyrococcus abyssi,” Journal of Bacteriology, vol. 189, no. 12, pp. 4510–4519, 2007.
[14]  M. Krupovic, M. Gonnet, W. Ben Hania, R. Forterre, and G. Erauso, “Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new thermococcus plasmids,” PLoS One, vol. 8, no. 1, p. e49044, 2013.
[15]  R. Khayat, L. Tang, E. T. Larson, C. M. Lawrence, M. Young, and J. E. Johnson, “Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 52, pp. 18944–18949, 2005.
[16]  E. T. Larson, D. Reiter, M. Young, and C. M. Lawrence, “Structure of A197 from Sulfolobus turreted icosahedral virus: a crenarchaeal viral glycosyltransferase exhibiting the GT-A fold,” Journal of Virology, vol. 80, no. 15, pp. 7636–7644, 2006.
[17]  J. Keller, N. Leulliot, B. Collinet et al., “Crystal structure of AFV1-102, a protein from the acidianus filamentous virus 1,” Protein Science, vol. 18, no. 4, pp. 845–849, 2009.
[18]  A. Goulet, M. Pina, P. Redder et al., “ORF157 from the archaeal virus Acidianus filamentous virus 1 defines a new class of nuclease,” Journal of Virology, vol. 84, no. 10, pp. 5025–5031, 2010.
[19]  J. C. Whisstock and A. M. Lesk, “Prediction of protein function from protein sequence and structure,” Quarterly Reviews of Biophysics, vol. 36, no. 3, pp. 307–340, 2003.
[20]  N. Peixeiro, J. Keller, B. Collinet, et al., “Structure and function of AvtR, a novel transcriptional regulator from a hyperthermophilic archaeal lipothrixvirus,” Journal of Virology, vol. 87, no. 1, pp. 124–136, 2013.
[21]  S. Hirose, K. Shimizu, S. Kanai, Y. Kuroda, and T. Noguchi, “POODLE-L: a two-level SVM prediction system for reliably predicting long disordered regions,” Bioinformatics, vol. 23, no. 16, pp. 2046–2053, 2007.
[22]  M. Krupovi? and D. H. Bamford, “Archaeal proviruses TKV4 and MVV extend the PRD1-adenovirus lineage to the phylum Euryarchaeota,” Virology, vol. 375, no. 1, pp. 292–300, 2008.
[23]  S. T. Arold, M. K. Hoellerer, and M. E. M. Noble, “The structural basis of localization and signaling by the focal adhesion targeting domain,” Structure, vol. 10, no. 3, pp. 319–327, 2002.
[24]  E. Papagrigoriou, A. R. Gingras, I. L. Barsukov et al., “Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle,” EMBO Journal, vol. 23, no. 15, pp. 2942–2951, 2004.
[25]  A. Leslie, Joint CCP4 and EACMB Newsletter Protein Crystallography, Daresbury Laboratory, Warrington, UK, 1992.
[26]  P. D. Adams, K. Gopal, R. W. Grosse-Kunstleve et al., “Recent developments in the PHENIX software for automated crystallographic structure determination,” Journal of Synchrotron Radiation, vol. 11, no. 1, pp. 53–55, 2004.
[27]  C. Vonrhein, E. Blanc, P. Roversi, and G. Bricogne, “Automated structure solution with autoSHARP,” Methods in Molecular Biology, vol. 364, pp. 215–230, 2007.
[28]  R. J. Morris, A. Perrakis, and V. S. Lamzin, “ARP/wARP and automatic interpretation of protein electron density maps,” Methods in Enzymology, vol. 374, pp. 229–244, 2003.
[29]  E. Blanc, P. Roversi, C. Vonrhein, C. Flensburg, S. M. Lea, and G. Bricogne, “Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT,” Acta Crystallographica Section D, vol. 60, no. 12, pp. 2210–2221, 2004.
[30]  T. A. Jones, “Interactive electron-density map interpretation: from INTER to O,” Acta Crystallographica Section D, vol. 60, no. 12, pp. 2115–2125, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133