Despite their crucial role in the nitrogen cycle, freshwater ecosystems are relatively rarely studied for active ammonia oxidizers (AO). This study of Lake Lucerne determined the abundance of both amoA genes and gene transcripts of ammonia-oxidizing archaea (AOA) and bacteria (AOB) over a period of 16 months, shedding more light on the role of both AO in a deep, alpine lake environment. At the surface, at 42?m water depth, and in the water layer immediately above the sediment, AOA generally outnumbered AOB. However, in the surface water during summer stratification, when both AO were low in abundance, AOB were more numerous than AOA. Temporal distribution patterns of AOA and AOB were comparable. Higher abundances of amoA gene transcripts were observed at the onset and end of summer stratification. In summer, archaeal amoA genes and transcripts correlated negatively with temperature and conductivity. Concentrations of ammonium and oxygen did not vary enough to explain the amoA gene and transcript dynamics. The observed herbivorous zooplankton may have caused a hidden flux of mineralized ammonium and a change in abundance of genes and transcripts. At the surface, AO might have been repressed during summer stratification due to nutrient limitation caused by active phytoplankton. 1. Introduction Nitrogen cycling is one of the major biogeochemical processes on Earth. The discovery of novel nitrogen-converting pathways in the past decades [1] has shown the lack of knowledge we had and still have on global nitrogen cycling. Additionally, intensified use of fertilizers and nitrogenous precipitation derived from industry and traffic has led to large changes in the N-cycle in many ecosystems [2]. A major recent discovery in relation to the nitrification process was the role of Archaea in ammonia oxidation [3–5]. This notion has led to a great interest in the presence of ammonia-oxidizing archaea and bacteria in many ecosystems, often determined by the occurrence of archaeal and bacterial amoA genes (e.g., [6, 7]). In most analyses, the presence of archaeal amoA genes outnumbered those of bacteria by orders of magnitudes. What this means for the relative activities of both groups has only been investigated in a few environmental studies [8, 9]. The ecological importance of AOA and AOB has been determined in several studies; the relative abundance of AOA and AOB in soils is thought to be influenced mainly by pH [10, 11], temperature [12], and ammonium [13, 14], while in marine systems, next to ammonium [15], oxygen concentrations are expected to play a major role
References
[1]
M. S. M. Jetten, “The microbial nitrogen cycle,” Environmental Microbiology, vol. 10, no. 11, pp. 2903–2909, 2008.
[2]
N. Gruber and J. N. Galloway, “An Earth-system perspective of the global nitrogen cycle,” Nature, vol. 451, no. 7176, pp. 293–296, 2008.
[3]
C. Wuchter, B. Abbas, M. J. L. Coolen et al., “Archaeal nitrification in the ocean,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 12317–12322, 2006.
[4]
M. K?nneke, A. E. Bernhard, J. R. De La Torre, C. B. Walker, J. B. Waterbury, and D. A. Stahl, “Isolation of an autotrophic ammonia-oxidizing marine archaeon,” Nature, vol. 437, no. 7058, pp. 543–546, 2005.
[5]
A. H. Treusch, S. Leininger, A. Kietzin, S. C. Schuster, H. P. Klenk, and C. Schleper, “Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling,” Environmental Microbiology, vol. 7, no. 12, pp. 1985–1995, 2005.
[6]
C. A. Francis, K. J. Roberts, J. M. Beman, A. E. Santoro, and B. B. Oakley, “Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14683–14688, 2005.
[7]
J. H. Rotthauwe, K. P. Witzel, and W. Liesack, “The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations,” Applied and Environmental Microbiology, vol. 63, no. 12, pp. 4704–4712, 1997.
[8]
G. W. Nicol, S. Leininger, C. Schleper, and J. I. Prosser, “The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria,” Environmental Microbiology, vol. 10, no. 11, pp. 2966–2978, 2008.
[9]
H. J. Di, K. C. Cameron, J. P. Shen et al., “Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils,” Nature Geoscience, vol. 2, no. 9, pp. 621–624, 2009.
[10]
G. W. Nicol, G. Webster, L. A. Glover, and J. I. Prosser, “Differential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil,” Environmental Microbiology, vol. 6, no. 8, pp. 861–867, 2004.
[11]
J.-Z. He, J.-P. Shen, L.-M. Zhang et al., “Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices,” Environmental Microbiology, vol. 9, no. 9, pp. 2364–2374, 2007.
[12]
M. Tourna, T. E. Freitag, G. W. Nicol, and J. I. Prosser, “Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms,” Environmental Microbiology, vol. 10, no. 5, pp. 1357–1364, 2008.
[13]
L. E. Lehtovirta-Morley, K. Stoecker, A. Vilcinskas, J. I. Prosser, and G. W. Nicol, “Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 15892–15897, 2011.
[14]
M. Tourna, M. Stieglmeier, A. Spang et al., “Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 20, pp. 8420–8425, 2011.
[15]
W. Martens-Habbena, P. M. Berube, H. Urakawa, J. R. De La Torre, and D. A. Stahl, “Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria,” Nature, vol. 461, no. 7266, pp. 976–979, 2009.
[16]
P. Lam, G. Lavik, M. M. Jensen et al., “Revising the nitrogen cycle in the Peruvian oxygen minimum zone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 12, pp. 4752–4757, 2009.
[17]
M. J. L. Coolen, B. Abbas, J. Van Bleijswijk et al., “Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids,” Environmental Microbiology, vol. 9, no. 4, pp. 1001–1016, 2007.
[18]
H. J. Laanbroek and A. Bollmann, “Nitrification in inland water,” in Nitrification, B. B. Ward, M. G. Klotz, and D. J. Arp, Eds., pp. 385–404, ASM Press, Washington, DC, USA, 2011.
[19]
M. Coci, P. L. E. Bodelier, and H. J. Laanbroek, “Epiphyton as a niche for ammonia-oxidizing bacteria: detailed comparison with benthic and pelagic compartments in shallow freshwater lakes,” Applied and Environmental Microbiology, vol. 74, no. 7, pp. 1963–1971, 2008.
[20]
C. B. Whitby, J. R. Saunders, R. W. Pickup, and A. J. McCarthy, “A comparison of ammonia-oxidiser populations in eutrophic and oligotrophic basins of a large freshwater lake,” Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, vol. 79, no. 2, pp. 179–188, 2001.
[21]
W. F. Vincent and M. T. Downes, “Nitrate accumulation in aerobic hypolimnia—relative importance of benthic and planktonic nitrifiers in an oligotrophic lake,” Applied and Environmental Microbiology, vol. 42, pp. 565–573, 1981.
[22]
A. C. Lehours, C. Bardot, A. Thenot, D. Debroas, and G. Fonty, “Anaerobic microbial communities in Lake Pavin, a unique meromictic lake in France,” Applied and Environmental Microbiology, vol. 71, no. 11, pp. 7389–7400, 2005.
[23]
A. C. Lehours, P. Evans, C. Bardot, K. Joblin, and F. Gérard, “Phylogenetic diversity of archaea and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France),” Applied and Environmental Microbiology, vol. 73, no. 6, pp. 2016–2019, 2007.
[24]
L. Liu, Y. Peng, X. Zheng, L. Xiao, and L. Yang, “Vertical structure of bacterial and archaeal communities within the sediment of a eutrophic lake as revealed by culture-independent methods,” Journal of Freshwater Ecology, vol. 25, no. 4, pp. 565–573, 2010.
[25]
Y. Wu, Y. Xiang, J. Wang, J. Zhong, J. He, and Q. L. Wu, “Heterogeneity of archaeal and bacterial ammonia-oxidizing communities in Lake Taihu, China,” Environmental Microbiology Reports, vol. 2, no. 4, pp. 569–576, 2010.
[26]
W. Ye, X. Liu, S. Lin et al., “The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu,” FEMS Microbiology Ecology, vol. 70, no. 2, pp. 263–276, 2009.
[27]
A. Hu, T. Yao, N. Jiao, Y. Liu, Z. Yang, and X. Liu, “Community structures of ammonia-oxidising archaea and bacteria in high-altitude lakes on the Tibetan Plateau,” Freshwater Biology, vol. 55, no. 11, pp. 2375–2390, 2010.
[28]
M. Llirós, E. O. Casamayor, and C. Borrego, “High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study,” FEMS Microbiology Ecology, vol. 66, no. 2, pp. 331–342, 2008.
[29]
C. I. Blaga, G. J. Reichart, O. Heiri, and J. S. Sinninghe Damsté, “Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north-south transect,” Journal of Paleolimnology, vol. 41, no. 3, pp. 523–540, 2009.
[30]
H. R. Bürgi and P. Stadelmann, “Alteration of phytoplankton structure in Lake Lucerne due to trophic conditions,” Aquatic Ecosystem Health, vol. 5, pp. 45–49, 2002.
[31]
M. Schnellmann, F. S. Anselmetti, D. Giardini, J. A. McKenzie, and S. N. Ward, “Prehistoric earthquake history revealed by lacustrine slump deposits,” Geology, vol. 30, pp. 1131–1134, 2002.
[32]
E. W. Vissers, P. L. E. Bodelier, G. Muyzer, and H. J. Laanbroek, “A nested PCR approach for improved recovery of archaeal 16S rRNA gene fragments from freshwater samples,” FEMS Microbiology Letters, vol. 298, no. 2, pp. 193–198, 2009.
[33]
D. E. Culley, W. P. Kovacik, F. J. Brockman, and W. Zhang, “Optimization of RNA isolation from the archaebacterium Methanosarcina barkeri and validation for oligonucleotide microarray analysis,” Journal of Microbiological Methods, vol. 67, no. 1, pp. 36–43, 2006.
[34]
G. Muyzer, E. C. De Waal, and A. G. Uitterlinden, “Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA,” Applied and Environmental Microbiology, vol. 59, no. 3, pp. 695–700, 1993.
[35]
D. L. Kirchman, H. Elifantz, A. I. Dittel, R. R. Malmstrom, and M. T. Cottrell, “Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean,” Limnology and Oceanography, vol. 52, no. 2, pp. 495–507, 2007.
[36]
C. Callieri, G. Corno, E. Caravati, S. Rasconi, M. Contesini, and R. Bertoni, “Bacteria, Archaea, and Crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake,” Applied and Environmental Microbiology, vol. 75, no. 22, pp. 7298–7300, 2009.
[37]
C. Tamburini, M. Garel, B. Al Ali et al., “Distribution and activity of Bacteria and Archaea in the different water masses of the Tyrrhenian Sea,” Deep-Sea Research Part II, vol. 56, no. 11-12, pp. 700–712, 2009.
[38]
M. Winder, “Photosynthetic picoplankton dynamics in Lake Tahoe: temporal and spatial niche partitioning among prokaryotic and eukaryotic cells,” Journal of Plankton Research, vol. 31, no. 11, pp. 1307–1320, 2009.
[39]
R. Naiman, J. J. Magnuson, D. M. McKnight, and J. A. Stanford, The Freshwater Imperative: A Research Agenda, Island Press, Washington, DC, USA, 1995.
[40]
S. Fietz, G. Kobanova, L. Izmesteva, and A. Nicklisch, “Regional, vertical and seasonal distribution of phytoplankton and photosynthetic pigments in Lake Baikal,” Journal of Plankton Research, vol. 27, no. 8, pp. 793–810, 2005.
[41]
H. Bührer and H. Ambühl, “Lake Lucerne, Switzerland, a long term study of 1961–1992,” Aquatic Sciences, vol. 63, no. 4, pp. 432–456, 2001.
[42]
T. H. Erguder, N. Boon, L. Wittebolle, M. Marzorati, and W. Verstraete, “Environmental factors shaping the ecological niches of ammonia-oxidizing archaea,” FEMS Microbiology Reviews, vol. 33, no. 5, pp. 855–869, 2009.
[43]
A. Bollmann and H. J. Laanbroek, “Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary,” Aquatic Microbial Ecology, vol. 28, no. 3, pp. 239–247, 2002.
[44]
J. M. Beman, B. N. Popp, and C. A. Francis, “Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California,” ISME Journal, vol. 2, no. 4, pp. 429–453, 2008.
[45]
P. Lam, M. M. Jensen, G. Lavik et al., “Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7104–7109, 2007.
[46]
J. Yan, S. C. M. Haaijer, H. J. M. Op den Camp et al., “Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory-scale model system,” Environmental Microbiology, vol. 14, pp. 3146–3158, 2012.
[47]
F. J. M. Verhagen and H. J. Laanbroek, “Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats,” Applied and Environmental Microbiology, vol. 57, no. 11, pp. 3255–3263, 1991.
[48]
D. A. Holen and M. E. Boraas, “Mixotrophy in chrysophytes,” in Chrysophyte Algae Ecology, Phylogeny and Development, pp. 119–140, Cambridge University Press, 1995.
[49]
C. Schleper and G. W. Nicol, “Ammonia-oxidising archaea—physiology, ecology and evolution,” in Advances in Microbial Physiology, vol. 57, pp. 1–41, Academic Press Ltd-Elsevier Science, London, UK, 2010.
[50]
J. Huisman and F. J. Weissing, “Biodiversity of plankton by species oscillations and chaos,” Nature, vol. 402, no. 6760, pp. 407–410, 1999.
[51]
P. C. Blainey, A. C. Mosier, A. Potanina, C. A. Francis, and S. R. Quake, “Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis,” PLoS ONE, vol. 6, no. 2, Article ID e16626, 2011.
[52]
E. W. Vissers, C. I. Blaga, P. L. E. Bodelier et al., “Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake,” FEMS Microbiology Ecology, vol. 83, pp. 515–526, 2013.