全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Archaea  2013 

Virus-Host and CRISPR Dynamics in Archaea-Dominated Hypersaline Lake Tyrrell, Victoria, Australia

DOI: 10.1155/2013/370871

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007–2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75–95%). Archaeal, bacterial, and viral populations were found to be dynamic on timescales of months to years, and different viral assemblages were present in planktonic, relative to host-associated (active and provirus) size fractions. Analyses of clustered regularly interspaced short palindromic repeat (CRISPR) regions indicate that both rare and abundant viruses were targeted, primarily by lower abundance hosts. Although very few spacers had hits to the NCBI nr database or to the 140 LT viral populations, 21% had hits to unassembled LT viral concentrate reads. This suggests local adaptation to LT-specific viruses and/or undersampling of haloviral assemblages in public databases, along with successful CRISPR-mediated maintenance of viral populations at abundances low enough to preclude genomic assembly. This is the first metagenomic report evaluating widespread archaeal dynamics at the population level on short timescales in a hypersaline system. 1. Introduction As the most abundant and ubiquitous biological entities, viruses influence host mortality and community structure, food web dynamics, and geochemical cycles [1, 2]. In order to better characterize the potential influence that viruses have on archaeal evolution and ecology, it is important to understand the coupled dynamics of viruses and their archaeal hosts in natural systems. Although previous studies have demonstrated dynamics in virus-host populations, most of these studies have focused on bacterial hosts, often restricted to targeted groups of virus-host pairs, and little is known about archaeal virus-host dynamics in natural systems. Community-scale virus-host analyses have often been based on low-resolution measurements of the whole community, relying on techniques such as denaturing gradient gel electrophoresis (DGGE), pulsed-field gel electrophoresis (PFGE), and microscopic counts (e.g., [3–5]). One exception is a study that examined viral and microbial dynamics through single read-based metagenomic analyses in four aquatic environments, including an archaea-dominated hypersaline crystallizer pond [6]. In that work, it was proposed

References

[1]  F. Rohwer, D. Prangishvili, and D. Lindell, “Roles of viruses in the environment,” Environmental Microbiology, vol. 11, no. 11, pp. 2771–2774, 2009.
[2]  C. A. Suttle, “Marine viruses—major players in the global ecosystem,” Nature Reviews Microbiology, vol. 5, no. 10, pp. 801–812, 2007.
[3]  K. Porter, B. E. Russ, and M. L. Dyall-Smith, “Virus-host interactions in salt lakes,” Current Opinion in Microbiology, vol. 10, no. 4, pp. 418–424, 2007.
[4]  R.-A. Sandaa and A. Larsen, “Seasonal variations in virus-host populations in Norwegian coastal waters: focusing on the cyanophage community infecting marine Synechococcus spp,” Applied and Environmental Microbiology, vol. 72, no. 7, pp. 4610–4618, 2006.
[5]  S. M. Short and C. A. Suttle, “Temporal dynamics of natural communities of marine algal viruses and eukaryotes,” Aquatic Microbial Ecology, vol. 32, no. 2, pp. 107–119, 2003.
[6]  B. Rodriguez-Brito, L. Li, L. Wegley et al., “Viral and microbial community dynamics in four aquatic environments,” ISME Journal, vol. 4, no. 6, pp. 739–751, 2010.
[7]  J. B. Emerson, B. C. Thomas, K. Andrade, E. E. Allen, K. B. Heidelberg, and J. F. Banfield, “Dynamic viral populations in hypersaline systems as revealed by metagenomic assembly,” Applied and Environmental Microbiology, vol. 78, pp. 6309–6320, 2012.
[8]  V. Kunin, S. He, F. Warnecke et al., “A bacterial metapopulation adapts locally to phage predation despite global dispersal,” Genome Research, vol. 18, no. 2, pp. 293–297, 2008.
[9]  A. F. Andersson and J. F. Banfield, “Virus population dynamics and acquired virus resistance in natural microbial communities,” Science, vol. 320, no. 5879, pp. 1047–1050, 2008.
[10]  R. E. Anderson, W. J. Brazelton, and J. A. Baross, “Using CRISPRs as ametagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage,” FEMS Microbiology Ecology, vol. 77, no. 1, pp. 120–133, 2011.
[11]  G. W. Tyson and J. F. Banfield, “Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses,” Environmental Microbiology, vol. 10, no. 1, pp. 200–207, 2008.
[12]  J. F. Heidelberg, W. C. Nelson, T. Schoenfeld, and D. Bhaya, “Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes,” PLoS ONE, vol. 4, no. 1, Article ID e4169, 2009.
[13]  R. Barrangou, C. Fremaux, H. Deveau et al., “CRISPR provides acquired resistance against viruses in prokaryotes,” Science, vol. 315, no. 5819, pp. 1709–1712, 2007.
[14]  F. J. M. Mojica, C. Díez-Villase?or, J. García-Martínez, and E. Soria, “Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements,” Journal of Molecular Evolution, vol. 60, no. 2, pp. 174–182, 2005.
[15]  R. Sorek, V. Kunin, and P. Hugenholtz, “CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea,” Nature Reviews Microbiology, vol. 6, no. 3, pp. 181–186, 2008.
[16]  B. Wiedenheft, S. H. Sternberg, and J. A. Doudna, “RNA-guided genetic silencing systems in bacteria and archaea,” Nature, vol. 482, no. 7385, pp. 331–338, 2012.
[17]  R. T. DeBoy, E. F. Mongodin, J. B. Emerson, and K. E. Nelson, “Chromosome evolution in the Thermotogales: large-scale inversions and strain diversification of CRISPR sequences,” Journal of Bacteriology, vol. 188, no. 7, pp. 2364–2374, 2006.
[18]  N. L. Held, A. Herrera, H. C. Quiroz, and R. J. Whitaker, “CRISPR associated diversity within a population of Sulfolobus islandicus,” PLoS ONE, vol. 5, no. 9, Article ID e12988, 2010.
[19]  N. L. Held and R. J. Whitaker, “Viral biogeography revealed by signatures in Sulfolobus islandicus genomes,” Environmental Microbiology, vol. 11, no. 2, pp. 457–466, 2009.
[20]  K. B. Heidelberg, W. C. Nelson, J. B. Holm, N. Eisenkolb, K. Andrade, and J. B. Emerson, “Characterization of eukaryotic microbial diversity in hypersaline Lake Tyrrell, Australia,” Frontiers in Microbiology, vol. 4, Article ID 115, 2013.
[21]  P. Narasingarao, S. Podell, J. A. Ugalde et al., “De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities,” ISME Journal, vol. 6, no. 1, pp. 81–93, 2012.
[22]  Y. Peng, H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin, “IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth,” Bioinformatics, vol. 28, no. 11, pp. 1420–1428, 2012.
[23]  M. Margulies, M. Egholm, W. E. Altman et al., “Genome sequencing in microfabricated high-density picolitre reactors,” Nature, vol. 437, pp. 376–380, 2005.
[24]  H. Li and R. Durbin, “Fast and accurate short read alignment with Burrows-Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.
[25]  C. S. Miller, B. J. Baker, B. C. Thomas, S. W. Singer, and J. F. Banfield, “EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data,” Genome Biology, vol. 12, no. 5, article R44, 2011.
[26]  R. C. Edgar, “Search and clustering orders of magnitude faster than BLAST,” Bioinformatics, vol. 26, no. 19, pp. 2460–2461, 2010.
[27]  E. Pruesse, J. Peplies, and F. O. Glockner, “SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes,” Bioinformatics, vol. 28, pp. 1823–1829, 2012.
[28]  E. Pruesse, C. Quast, K. Knittel et al., “SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB,” Nucleic Acids Research, vol. 35, no. 21, pp. 7188–7196, 2007.
[29]  C. Quast, E. Pruesse, P. Yilmaz et al., “The SILVA ribosomal RNA gene database project: improved data processing and web-based tools,” Nucleic Acids Research, vol. 41, pp. D590–D596, 2013.
[30]  C. T. Skennerton, M. Imelfort, and G. W. Tyson, “Crass: identification and reconstruction of CRISPR from unassembled metagenomic data,” Nucleic Acids Research, vol. 41, no. 10, p. e105, 2013.
[31]  R. Danovaro, C. Corinaldesi, A. Dell'Anno et al., “Marine viruses and global climate change,” FEMS Microbiology Reviews, vol. 35, no. 6, pp. 993–1034, 2011.
[32]  M. L. Dyall-Smith, F. Pfeiffer, K. Klee et al., “Haloquadratum walsbyi: limited diversity in a global pond,” PLoS ONE, vol. 6, no. 6, Article ID e20968, 2011.
[33]  M. B. Duhaime and M. B. Sullivan, “Ocean viruses: rigorously evaluating the metagenomic sample-to-sequence pipeline,” Virology, vol. 434, pp. 181–186, 2012.
[34]  M. B. Duhaime, L. Deng, B. T. Poulos, and M. B. Sullivan, “Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method,” Environmental Microbiology, vol. 14, pp. 2526–2537, 2012.
[35]  R. J. Parsons, M. Breitbart, M. W. Lomas, and C. A. Carlson, “Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea,” ISME Journal, vol. 6, no. 2, pp. 273–284, 2012.
[36]  S. Podell, J. A. Ugalde, P. Narasingarao, J. F. Banfield, K. B. Heidelberg, and E. E. Allen, “Assembly-driven community genomics of a hypersaline microbial ecosystem,” PLoS ONE, vol. 8, Article ID e61692, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133