全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Archaea  2010 

Shaping the Archaeal Cell Envelope

DOI: 10.1155/2010/608243

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although archaea have a similar cellular organization as other prokaryotes, the lipid composition of their membranes and their cell surface is unique. Here we discuss recent developments in our understanding of the archaeal protein secretion mechanisms, the assembly of macromolecular cell surface structures, and the release of S-layer-coated vesicles from the archaeal membrane. 1. The Archaeal Cell Envelope The ability of many archaea to endure extreme conditions in hostile environments intrigues researchers to study the molecular mechanisms and specific adaptations involved. Very early, it was realized that the structure of the archaeal cell envelope differs substantially from that of bacteria [1]. With the only exception of Ignicoccus which exhibits an outer membrane enclosing a huge periplasmic space [2], known archaea possess only a single membrane. This cytoplasmic membrane is enclosed by an S-layer, a two-dimensional protein crystal that fully covers the cells (see review Jarrell et al. in this issue). In contrast to bacterial ester lipids, archaeal lipids consist of repeating isoprenyl groups linked to a glycerol backbone through an ether linkage [3, 4]. These lipids typically form diether bilayer membranes similar to membranes of eukarya and bacteria. Hyperthermo-acidophiles contain tetraether lipids that consist of C40 isoprenoid acyl chains that span the membrane entirely forming a monolayer membrane [5]. These membranes are extremely proton impermeable and enable these organisms to survive under conditions that the extracellular pH is up to 4 units below that of the cytoplasm [6]. Another peculiarity is that most of the extracellular proteins of archaea are glycosylated via N- and O-glycosylation. Finally, Archaea do not produce any murein, and only some methanogenic species are known to produce pseudomurein [7]. As the archaeal cell surface is so different from that of bacteria and eukarya, unique mechanisms must exist to form and shape it. Until recently most of our knowledge of protein secretion and on the assembly of the cell surface components in archaea was obtained by comparative genomic studies. However, in recent years tremendous progress has been made in our understanding of the assembly and function of cell surface structures and both the structural and functional basis of protein translocation across the archaeal membrane. Here we will discuss these topics with an emphasis on the cell surface structures. 2. Protein Secretion 2.1. Transport of Unfolded Proteins Across the Cytoplasmic Membrane The ability to transport proteins

References

[1]  H. Koenig, “Archaeobacterial cell envelopes,” Canadian Journal of Microbiology, vol. 34, pp. 395–406, 1988.
[2]  R. Rachel, I. Wyschkony, S. Riehl, and H. Huber, “The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon,” Archaea, vol. 1, no. 1, pp. 9–18, 2002.
[3]  M. Kates, “Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria,” Journal of Microbiological Methods, vol. 25, no. 2, pp. 113–128, 1996.
[4]  M. De Rosa, A. Gambacorta, B. Nicolaus, B. Chappe, and P. Albrecht, “Isoprenoid ethers; backbone of complex lipids of the archaebacterium Sulfolobus solfataricus,” Biochimica et Biophysica Acta (BBA), vol. 753, no. 2, pp. 249–256, 1983.
[5]  M. De Rosa, A. Trincone, B. Nicolaus, A. Gambacorta, and G. di Prisco, “Archaebacteria: lipids, membrane structures, and adaptations to environmental stresses,” in Life under Extreme Conditions, pp. 61–87, Springer, Berlin, Germany, 1991.
[6]  J. L. C. M. Van de Vossenberg, T. Ubbink-Kok, M. G. L. Elferink, A. J. M. Driessen, and W. N. Konings, “Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea,” Molecular Microbiology, vol. 18, no. 5, pp. 925–932, 1995.
[7]  O. Kandler and H. Koenig, “Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria,” Archives of Microbiology, vol. 118, no. 2, pp. 141–152, 1978.
[8]  A. J. M. Driessen and N. Nouwen, “Protein translocation across the bacterial cytoplasmic membrane,” Annual Review of Biochemistry, vol. 77, pp. 643–667, 2008.
[9]  A. M. Flower, L. L. Hines, and P. L. Pfennig, “SecG is an auxiliary component of the protein export apparatus of Escherichia coli,” Molecular and General Genetics, vol. 263, no. 1, pp. 131–136, 2000.
[10]  L. N. Kinch, M. H. Saier Jr., and N. V. Grishin, “Sec61β—a component of the archaeal protein secretory system,” Trends in Biochemical Sciences, vol. 27, no. 4, pp. 170–171, 2002.
[11]  S.-V. Albers, Z. Szabó, and A. J. M. Driessen, “Protein secretion in the Archaea: multiple paths towards a unique cell surface,” Nature Reviews Microbiology, vol. 4, no. 7, pp. 537–547, 2006.
[12]  B. Van den Berg, W. M. Clemons Jr., I. Collinson, Y. Modis, E. Hartmann, S. C. Harrison, and T. A. Rapoport, “X-ray structure of a protein-conducting channel,” Nature, vol. 427, no. 6969, pp. 36–44, 2004.
[13]  G. Ring and J. Eichler, “Extreme secretion: protein translocation across the archael plasma membrane,” Journal of Bioenergetics and Biomembranes, vol. 36, no. 1, pp. 35–45, 2004.
[14]  V. Irihimovitch and J. Eichler, “Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii,” The Journal of Biological Chemistry, vol. 278, no. 15, pp. 12881–12887, 2003.
[15]  N. J. Hand, R. Klein, A. Laskewitz, and M. Pohlschr?der, “Archaeal and bacterial SecD and SecF homologs exhibit striking structural and functional conservation,” Journal of Bacteriology, vol. 188, no. 4, pp. 1251–1259, 2006.
[16]  D. J. F. du Plessis, G. Berrelkamp, N. Nouwen, and A. J. M. Driessen, “The lateral gate of SecYEG opens during protein translocation,” The Journal of Biological Chemistry, vol. 284, no. 23, pp. 15805–15814, 2009.
[17]  C. Robinson and A. Bolhuis, “Tat-dependent protein targeting in prokaryotes and chloroplasts,” Biochimica et Biophysica Acta, vol. 1694, no. 1–3, pp. 135–147, 2004.
[18]  K. Dilks, R. W. Rose, E. Hartmann, and M. Pohlschr?der, “Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey,” Journal of Bacteriology, vol. 185, no. 4, pp. 1478–1483, 2003.
[19]  K. Dilks, M. I. Giménez, and M. Pohlschr?der, “Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea,” Journal of Bacteriology, vol. 187, no. 23, pp. 8104–8113, 2005.
[20]  D. C. Kwan, J. R. Thomas, and A. Bolhuis, “Bioenergetic requirements of a Tat-dependent substrate in the halophilic archaeon Haloarcula hispanica,” FEBS Journal, vol. 275, no. 24, pp. 6159–6167, 2008.
[21]  D. A. Widdick, K. Dilks, G. Chandra, A. Bottrill, M. Naldrett, M. Pohlschr?der, and T. Palmer, “The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 47, pp. 17927–17932, 2006.
[22]  G. von Heijne, “The signal peptide,” Journal of Membrane Biology, vol. 115, no. 3, pp. 195–201, 1990.
[23]  D. Tullman-Ercek, M. P. DeLisa, Y. Kawarasaki, P. Iranpour, B. Ribnicky, T. Palmer, and G. Georgiou, “Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides,” The Journal of Biological Chemistry, vol. 282, no. 11, pp. 8309–8316, 2007.
[24]  J. W. Izard and D. A. Kendall, “Signal peptides: exquisitely designed transport promoters,” Molecular Microbiology, vol. 13, no. 5, pp. 765–773, 1994.
[25]  M. P. DeLisa, D. Tullman, and G. Georgiou, “Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 6115–6120, 2003.
[26]  S. Richter, U. Lindenstrauss, C. Lücke, R. Bayliss, and T. Brüser, “Functional tat transport of unstructured, small, hydrophilic proteins,” The Journal of Biological Chemistry, vol. 282, no. 46, pp. 33257–33264, 2007.
[27]  I. B. Holland, L. Schmitt, and J. Young, “Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway,” Molecular Membrane Biology, vol. 22, no. 1-2, pp. 29–39, 2005.
[28]  R. Cannio, A. D'Angelo, M. Rossi, and S. Bartolucci, “A superoxide dismutase from the archaeon Sulfolobus solfataricus is an extracellular enzyme and prevents the deactivation by superoxide of cell- bound proteins,” European Journal of Biochemistry, vol. 267, no. 1, pp. 235–243, 2000.
[29]  A. F. Ellen, S.-V. Albers, and A. J. M. Driessen, “Comparative study of the extracellular proteome of Sulfolobus species reveals limited secretion,” Extremophiles, vol. 14, no. 1, pp. 87–98, 2010.
[30]  G. Palmieri, R. Cannio, I. Fiume, M. Rossi, and G. Pocsfalvi, “Outside the unusual cell wall of the hyperthermophilic archaeon Aeropyrum pernix K1,” Molecular and Cellular Proteomics, vol. 8, no. 11, pp. 2570–2581, 2009.
[31]  P. K. Chong and P. C. Wright, “Identification and characterization of the Sulfolobus solfataricus P2 proteome,” Journal of Proteome Research, vol. 4, no. 5, pp. 1789–1798, 2005.
[32]  A. Filloux, “The underlying mechanisms of type II protein secretion,” Biochimica et Biophysica Acta, vol. 1694, no. 1–3, pp. 163–179, 2004.
[33]  R. Voulhoux, G. Ball, B. Ize, M. L. Vasil, A. Lazdunski, L.-F. Wu, and A. Filloux, “Involvement of the twin-arginine translocation system in protein secretion via the type II pathway,” EMBO Journal, vol. 20, no. 23, pp. 6735–6741, 2001.
[34]  I. Chen, P. J. Christie, and D. Dubnau, “The ins and outs of DNA transfer in bacteria,” Science, vol. 310, no. 5753, pp. 1456–1460, 2005.
[35]  R. Fronzes, E. Sch?fer, L. Wang, H. R. Saibil, E. V. Orlova, and G. Waksman, “Structure of a type IV secretion system core complex,” Science, vol. 323, no. 5911, pp. 266–268, 2009.
[36]  Q. She, H. Phan, R. A. Garrett, S.-V. Albers, K. M. Stedman, and W. Zillig, “Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon,” Extremophiles, vol. 2, no. 4, pp. 417–425, 1998.
[37]  G. Erauso, K. M. Stedman, H. J. G. van den Werken, W. Zillig, and J. van der Oost, “Two novel conjugative plasmids from a single strain of Sulfolobus,” Microbiology, vol. 152, no. 7, pp. 1951–1968, 2006.
[38]  D. Prangishvili, S.-V. Albers, and S.-V. Albers, “Conjugation in archaea: frequent occurrence of conjugative plasmids in Sulfolobus,” Plasmid, vol. 40, no. 3, pp. 190–202, 1998.
[39]  K. M. Stedman, Q. She, and Q. She, “pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus: insights into recombination and conjugation in Crenarchaeota,” Journal of Bacteriology, vol. 182, no. 24, pp. 7014–7020, 2000.
[40]  I. Rosenshine, R. Tchelet, and M. Mevarech, “The mechanism of DNA transfer in the mating system of an archaebacterium,” Science, vol. 245, no. 4924, pp. 1387–1389, 1989.
[41]  L. Craig and J. Li, “Type IV pili: paradoxes in form and function,” Current Opinion in Structural Biology, vol. 18, no. 2, pp. 267–277, 2008.
[42]  M. S. Strom, D. N. Nunn, and S. Lory, “A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 6, pp. 2404–2408, 1993.
[43]  S. Y. M. Ng, B. Zolghadr, A. J. M. Driessen, S.-V. Albers, and K. F. Jarrell, “Cell surface structures of archaea,” Journal of Bacteriology, vol. 190, no. 18, pp. 6039–6047, 2008.
[44]  P. J. Planet, S. C. Kachlany, R. DeSalle, and D. H. Figurski, “Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2503–2508, 2001.
[45]  A. Yamagata and J. A. Tainer, “Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism,” EMBO Journal, vol. 26, no. 3, pp. 878–890, 2007.
[46]  S.-V. Albers and A. J. M. Driessen, “Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey,” Archives of Microbiology, vol. 177, no. 3, pp. 209–216, 2002.
[47]  N. F. W. Saunders, C. Ng, M. Raftery, M. Guilhaus, A. Goodchild, and R. Cavicchioli, “Proteomic and computational analysis of secreted proteins with type I signal peptides from the antarctic archaeon Methanococcoides burtonii,” Journal of Proteome Research, vol. 5, no. 9, pp. 2457–2464, 2006.
[48]  J. Eichler and M. W. W. Adams, “Posttranslational protein modification in Archaea,” Microbiology and Molecular Biology Reviews, vol. 69, no. 3, pp. 393–425, 2005.
[49]  M. I. Giménez, K. Dilks, and M. Pohlschr?der, “Haloferax volcanii twin-arginine translocation substates include secreted soluble, C-terminally anchored and lipoproteins,” Molecular Microbiology, vol. 66, no. 6, pp. 1597–1606, 2007.
[50]  S.-V. Albers, Z. Szabó, and A. J. M. Driessen, “Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity,” Journal of Bacteriology, vol. 185, no. 13, pp. 3918–3925, 2003.
[51]  S. L. Bardy and K. F. Jarrell, “FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity,” FEMS Microbiology Letters, vol. 208, no. 1, pp. 53–59, 2002.
[52]  Z. Szabó, A. O. Stahl, S.-V. Albers, J. C. Kissinger, A. J. M. Driessen, and M. Pohlschr?der, “Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases,” Journal of Bacteriology, vol. 189, no. 3, pp. 772–778, 2007.
[53]  S.-O. Shan and P. Walter, “Co-translational protein targeting by the signal recognition particle,” FEBS Letters, vol. 579, no. 4, pp. 921–926, 2005.
[54]  P. F. Egea, S.-O. Shan, J. Napetschnig, D. F. Savage, P. Walter, and R. M. Stroud, “Substrate twinning activates the signal recognition particle and its receptor,” Nature, vol. 427, no. 6971, pp. 215–221, 2004.
[55]  A. Haddad, R. W. Rose, and M. Pohlschr?der, “The Haloferax volcanii FtsY homolog is critical for haloarchaeal growth but does not require the A domain,” Journal of Bacteriology, vol. 187, no. 12, pp. 4015–4022, 2005.
[56]  H. Tjalsma, A. Bolhuis, J. D. H. Jongbloed, S. Bron, and J. M. Van Dijl, “Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome,” Microbiology and Molecular Biology Reviews, vol. 64, no. 3, pp. 515–547, 2000.
[57]  J. L. Gardy, M. R. Laird, F. Chen, S. Rey, C. J. Walsh, M. Ester, and F. S. L. Brinkman, “PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis,” Bioinformatics, vol. 21, no. 5, pp. 617–623, 2005.
[58]  J. D. Bendtsen, H. Nielsen, G. von Heijne, and S. Brunak, “Improved prediction of signal peptides: signalP 3.0,” Journal of Molecular Biology, vol. 340, no. 4, pp. 783–795, 2004.
[59]  S. L. Bardy, J. Eichler, and K. F. Jarrell, “Archaeal signal peptides—a comparative survey at the genome level,” Protein Science, vol. 12, no. 9, pp. 1833–1843, 2003.
[60]  M. Abu-Qarn and J. Eichler, “An analysis of amino acid sequences surrounding archaeal glycoprotein sequons,” Archaea, vol. 2, no. 2, pp. 73–81, 2007.
[61]  M. Saleh, C. Song, S. Nasserulla, and L. G. Leduc, “Indicators from archaeal secretomes,” Microbiological Research, vol. 165, no. 1, pp. 1–10, 2010.
[62]  P. G. Bagos, K. D. Tsirigos, S. K. Plessas, T. D. Liakopoulos, and S. J. Hamodrakas, “Prediction of signal peptides in archaea,” Protein Engineering, Design and Selection, vol. 22, no. 1, pp. 27–35, 2009.
[63]  T. J. Williams, D. W. Burg, M. J. Raftery, A. Poljak, M. Guilhaus, O. Pilak, and R. Cavicchioli, “Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii part I: the effect of growth temperature,” Journal of Proteome Research, vol. 9, no. 2, pp. 640–652, 2010.
[64]  D. R. Francoleon, P. Boontheung, and P. Boontheung, “S-layer, surface-accessible, and concanavalin a binding proteins of Methanosarcina acetivorans and Methanosarcina mazei,” Journal of Proteome Research, vol. 8, no. 4, pp. 1972–1982, 2009.
[65]  L. Mashburn-Warren, R. J. C. Mclean, and M. Whiteley, “Gram-negative outer membrane vesicles: beyond the cell surface,” Geobiology, vol. 6, no. 3, pp. 214–219, 2008.
[66]  N. Soler, E. Marguet, J.-M. Verbavatz, and P. Forterre, “Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales,” Research in Microbiology, vol. 159, no. 5, pp. 390–399, 2008.
[67]  A.-L. Reysenbach, Y. Liu, and Y. Liu, “A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents,” Nature, vol. 442, no. 7101, pp. 444–447, 2006.
[68]  A. F. Ellen, S.-V. Albers, and S.-V. Albers, “Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components,” Extremophiles, vol. 13, no. 1, pp. 67–79, 2009.
[69]  R. Grimm, H. Singh, R. Rachel, D. Typke, W. Zillig, and W. Baumeister, “Electron tomography of ice-embedded prokaryotic cells,” Biophysical Journal, vol. 74, no. 2, pp. 1031–1042, 1998.
[70]  D. Prangishvili, I. Holz, E. Stieger, S. Nickell, J. K. Kristjansson, and W. Zillig, “Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus,” Journal of Bacteriology, vol. 182, no. 10, pp. 2985–2988, 2000.
[71]  R. Y. Samson, T. Obita, S. M. Freund, R. L. Williams, and S. D. Bell, “A role for the ESCRT system in cell division in archaea,” Science, vol. 322, no. 5908, pp. 1710–1713, 2008.
[72]  F. Mayer and G. Gottschalk, “The bacterial cytoskeleton and its putative role in membrane vesicle formation observed in a gram-positive bacterium producing starch-degrading enzymes,” Journal of Molecular Microbiology and Biotechnology, vol. 6, no. 3-4, pp. 127–132, 2003.
[73]  M. L. Rodrigues, L. Nimrichter, and L. Nimrichter, “Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport,” Eukaryotic Cell, vol. 6, no. 1, pp. 48–59, 2007.
[74]  B. L. Deatherage, J. C. Lara, T. Bergsbaken, S. L. R. Barrett, S. Lara, and B. T. Cookson, “Biogenesis of bacterial membrane vesicles,” Molecular Microbiology, vol. 72, no. 6, pp. 1395–1407, 2009.
[75]  E.-Y. Lee, D.-S. Choi, K.-P. Kim, and Y. S. Gho, “Proteomics in Gram-negative bacterial outer membrane vesicles,” Mass Spectrometry Reviews, vol. 27, no. 6, pp. 535–555, 2008.
[76]  C. Balsalobre, J. M. Silván, S. Berglund, Y. Mizunoe, B. E. Uhlin, and S. N. Wai, “Release of the type I secreted α-haemolysin via outer membrane vesicles from Escherichia coli,” Molecular Microbiology, vol. 59, no. 1, pp. 99–112, 2006.
[77]  L. M. Mashburn and M. Whiteley, “Membrane vesicles traffic signals and facilitate group activities in a prokaryote,” Nature, vol. 437, no. 7057, pp. 422–425, 2005.
[78]  A. J. McBroom and M. J. Kuehn, “Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response,” Molecular Microbiology, vol. 63, no. 2, pp. 545–558, 2007.
[79]  N. A. Thomas, S. Mueller, A. Klein, and K. F. Jarrell, “Mutants in flaI and flaJ of the archaeon Methanococcus voltae are deficient in flagellum assembly,” Molecular Microbiology, vol. 46, no. 3, pp. 879–887, 2002.
[80]  Z. Szabó, M. Sani, and M. Sani, “Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus,” Journal of Bacteriology, vol. 189, no. 11, pp. 4305–4309, 2007.
[81]  S. L. Bardy, T. Mori, K. Komoriya, S.-I. Aizawa, and K. F. Jarrell, “Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus voltae,” Journal of Bacteriology, vol. 184, no. 19, pp. 5223–5233, 2002.
[82]  T. Nutsch, W. Marwan, D. Oesterhelt, and E. D. Gilles, “Signal processing and flagellar motor switching during phototaxis of Halobacterium salinarum,” Genome Research, vol. 13, no. 11, pp. 2406–2412, 2003.
[83]  M. Alam and D. Oesterhelt, “Morphology, function and isolation of halobacterial flagella,” Journal of Molecular Biology, vol. 176, no. 4, pp. 459–475, 1984.
[84]  D. J. N?ther, R. Rachel, G. Wanner, and R. Wirth, “Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts,” Journal of Bacteriology, vol. 188, no. 19, pp. 6915–6923, 2006.
[85]  S. Schopf, G. Wanner, R. Rachel, and R. Wirth, “An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri,” Archives of Microbiology, vol. 190, no. 3, pp. 371–377, 2008.
[86]  B. Zolghadr, A. Kling, A. Koerdt, A. J. M. Driessen, R. Rachel, and S.-V. Albers, “Appendage-mediated surface adherence of Sulfolobus solfataricus,” Journal of Bacteriology, vol. 192, no. 1, pp. 104–110, 2010.
[87]  S. Y. M. Ng, B. Chaban, and K. F. Jarrell, “Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications,” Journal of Molecular Microbiology and Biotechnology, vol. 11, no. 3–5, pp. 167–191, 2006.
[88]  S.-V. Albers and M. Pohlschr?der, “Diversity of archaeal type IV pilin-like structures,” Extremophiles, vol. 13, no. 3, pp. 403–410, 2009.
[89]  S. Trachtenberg and S. Cohen-Krausz, “The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure,” Journal of Molecular Microbiology and Biotechnology, vol. 11, no. 3–5, pp. 208–220, 2006.
[90]  M. G. Pyatibratov, S. N. Beznosov, R. Rachel, E. I. Tiktopulo, A. K. Surin, A. S. Syutkin, and O. V. Fedorov, “Alternative flagellar filament types in the haloarchaeon Haloarcula marismortui,” Canadian Journal of Microbiology, vol. 54, no. 10, pp. 835–844, 2008.
[91]  L. Craig, M. E. Pique, and J. A. Tainer, “Type IV pilus structure and bacterial pathogenicity,” Nature Reviews Microbiology, vol. 2, no. 5, pp. 363–378, 2004.
[92]  S. Streif, W. F. Staudinger, W. Marwan, and D. Oesterhelt, “Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP,” Journal of Molecular Biology, vol. 384, no. 1, pp. 1–8, 2008.
[93]  N. A. Thomas, S. L. Bardy, and K. F. Jarrell, “The archaeal flagellum: a different kind of prokaryotic motility structure,” FEMS Microbiology Reviews, vol. 25, no. 2, pp. 147–174, 2001.
[94]  S.-V. Albers and A. J. M. Driessen, “Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus solfataricus,” Microbiology, vol. 151, no. 3, pp. 763–773, 2005.
[95]  N. Patenge, A. Berendes, H. Engelhardt, S. C. Schuster, and D. Oesterhelt, “The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum,” Molecular Microbiology, vol. 41, no. 3, pp. 653–663, 2001.
[96]  N. A. Thomas and K. F. Jarrell, “Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins,” Journal of Bacteriology, vol. 183, no. 24, pp. 7154–7164, 2001.
[97]  Z. Szabó, S.-V. Albers, and A. J. M. Driessen, “Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus,” Journal of Bacteriology, vol. 188, no. 4, pp. 1437–1443, 2006.
[98]  S. Cohen-Krausz and S. Trachtenberg, “The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili,” Journal of Molecular Biology, vol. 321, no. 3, pp. 383–395, 2002.
[99]  S. Cohen-Krausz and S. Trachtenberg, “The flagellar filament structure of the extreme acidothermophile Sulfolobus shibatae B12 suggests that archaeabacterial flagella have a unique and common symmetry and design,” Journal of Molecular Biology, vol. 375, no. 4, pp. 1113–1124, 2008.
[100]  M. L. Kalmokoff and K. F. Jarrell, “Cloning and sequencing of a multigene family encoding the flagellins of Methanococcus voltae,” Journal of Bacteriology, vol. 173, no. 22, pp. 7113–7125, 1991.
[101]  B. Chaban, S. Y. M. Ng, M. Kanbe, I. Saltzman, G. Nimmo, S.-I. Aizawa, and K. F. Jarrell, “Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis,” Molecular Microbiology, vol. 66, no. 3, pp. 596–609, 2007.
[102]  S. N. Beznosov, M. G. Pyatibratov, and O. V. Fedorov, “On the multicomponent nature of Halobacterium salinarum flagella,” Microbiology, vol. 76, no. 4, pp. 435–441, 2007.
[103]  L. Gerl and M. Sumper, “Halobacterial flagellins are encoded by a multigene family. Characterization of five flagellin genes,” The Journal of Biological Chemistry, vol. 263, no. 26, pp. 13246–13251, 1988.
[104]  V. Y. Tarasov, M. G. Pyatibratov, S.-L. Tang, M. Dyall-Smith, and O. V. Fedorov, “Role of flagellins from A and B loci in flagella formation of Halobacterium salinarum,” Molecular Microbiology, vol. 35, no. 1, pp. 69–78, 2000.
[105]  D. M. Faguy, D. P. Bayley, A. S. Kostyukova, N. A. Thomas, and K. F. Jarrell, “Isolation and characterization of flagella and flagellin proteins from the thermoacidophilic archaea Thermoplasma volcanium and Sulfolobus shibatae,” Journal of Bacteriology, vol. 178, no. 3, pp. 902–905, 1996.
[106]  S.-V. Albers, M. Jonuscheit, and M. Jonuscheit, “Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus,” Applied and Environmental Microbiology, vol. 72, no. 1, pp. 102–111, 2006.
[107]  J. Abendroth, P. Murphy, M. Sandkvist, M. Bagdasarian, and W. G. J. Hol, “The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae,” Journal of Molecular Biology, vol. 348, no. 4, pp. 845–855, 2005.
[108]  M. Schlesner, A. Miller, and A. Miller, “Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus,” BMC Microbiology, vol. 9, article 56, 2009.
[109]  S. Nickell, R. Hegerl, W. Baumeister, and R. Rachel, “Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography,” Journal of Structural Biology, vol. 141, no. 1, pp. 34–42, 2003.
[110]  G. Rieger, R. Rachel, R. Hermann, and K. O. Stetter, “Ultrastructure of the hyperthermophilic archaeon Pyrodictium-Abyssi,” Journal of Structural Biology, vol. 115, no. 1, pp. 78–87, 1995.
[111]  C. Horn, B. Paulmann, G. Kerlen, N. Junker, and H. Huber, “In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope,” Journal of Bacteriology, vol. 181, no. 16, pp. 5114–5118, 1999.
[112]  K.O. Stetter, H. Konig, and E. Stackebrandt, “Pyrodictium gen-nov, a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105-degrees-C,” Systematic and Applied Microbiology, vol. 4, pp. 535–551, 1983.
[113]  C. Moissl, R. Rachel, A. Briegel, H. Engelhardt, and R. Huber, “The unique structure of archaeal ‘hami’, highly complex cell appendages with nano-grappling hooks,” Molecular Microbiology, vol. 56, no. 2, pp. 361–370, 2005.
[114]  C. Rudolph, G. Wanner, and R. Huber, “Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology,” Applied and Environmental Microbiology, vol. 67, no. 5, pp. 2336–2344, 2001.
[115]  D. W. Müller, C. Meyer, and C. Meyer, “The Iho670 fibers of Ignicoccus hospitalis: a new type of archaeal cell surface appendage,” Journal of Bacteriology, vol. 191, no. 20, pp. 6465–6468, 2009.
[116]  S. Fr?ls, M. Ajon, and M. Ajon, “UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation,” Molecular Microbiology, vol. 70, no. 4, pp. 938–952, 2008.
[117]  Y. A. Wang, X. Yu, S. Y. M. Ng, K. F. Jarrell, and E. H. Egelman, “The structure of an archaeal pilus,” Journal of Molecular Biology, vol. 381, no. 2, pp. 456–466, 2008.
[118]  B. Zolghadr, S. Weber, Z. Szabó, A. J. M. Driessen, and S.-V. Albers, “Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus,” Molecular Microbiology, vol. 64, no. 3, pp. 795–806, 2007.
[119]  D. F. Rodrigues and M. Elimelech, “Role of type 1 fimbriae and mannose in the development of Escherichia coli K12 biofilm: from initial cell adhesion to biofilm formation,” Biofouling, vol. 25, no. 5, pp. 401–411, 2009.
[120]  H. Laue, A. Schenk, H. Li, L. Lambertsen, T. R. Neu, S. Molin, and M. S. Ullrich, “Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae,” Microbiology, vol. 152, no. 10, pp. 2909–2918, 2006.
[121]  S. Tsuneda, H. Aikawa, H. Hayashi, A. Yuasa, and A. Hirata, “Extracellular polymeric substances responsible for bacterial adhesion onto solid surface,” FEMS Microbiology Letters, vol. 223, no. 2, pp. 287–292, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133